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1 Introduction

We develop asymptotic theory for inference in network-formation models, which have
important applications for the study of social networks. The economic perspective
on network science is broadly concerned with two distinct but related questions: (1)
what incentives govern the formation of social connections, and (2) how do these con-
nections influence economic behavior? To empirically study (1), we require a method
to estimate models of network formation. For example, a well-known determinant
of network formation is homophily, the notion that two individuals are more likely
to associate if their attributes are similar. Another possible determinant is popular-
ity, meaning that individuals prefer to be friends with those who already have many
friends. Here, the endogenous linking decisions of others, rather than their attributes,
directly influence an individual’s linking decision. Network-formation models enable
the econometrician to disentangle endogenous determinants of link formation, such
as popularity, from exogenous determinants, such as homophily.

The peer-effects literature is concerned with question (2), how networks mediate
social interactions. A pervasive problem is network endogeneity or latent homophily
(Shalizi and Thomas, 2011): links tend to form between individuals with similar
unobserved attributes. For example, high-ability students are likely to become friends,
which confounds the effect of high-achieving students on peer achievement. Network-
formation models can provide a solution for latent homophily, as formally modeling
the incentives for forming social connections can control for network endogeneity
(Badev, 2013; Goldsmith-Pinkham and Imbens, 2013; Uetake, 2012).

This paper studies the following empirical model of network formation:

Gij “ 1 if and only if V n
ij pG,W ; θ0q ě 0, (1)

for all i, j P Nn, the set of n nodes/individuals/agents. Here G is the observed
network, represented as an n ˆ n matrix whose ijth entry, Gij, is an indicator for
whether or not i and j form a link. The set of node attributes is represented by
W . This model is a natural extension of the standard discrete-choice model that
allows V n

ij p¨q to depend on the endogenous outcome G, what we refer to as network
externalities. For example, if a link represents a friendship, two individuals may be
more likely to become friends if they both have a friend in common, in which case
link formation depends on the presence of other links. Model (1) has been used in
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empirical network studies (e.g. Comola, 2012; DeWeert, 2004; Powell et al., 2005), but
the formal asymptotic properties of their inference procedures have not been studied.
More commonly, empirical researchers fit dyadic regression models (e.g. Bramoullé
and Fortin, 2010; Fafchamps and Gubert, 2007), which are special cases of (1) in
which V n

ij p¨q does not depend on G. This reduces the model to a standard discrete-
choice setup but at the cost of ruling out externalities a priori. The goal of this paper
is to develop the formal statistical theory for discrete-choice models of type (1) to
enable inference on network externalities.

The existence of network externalities creates two fundamental difficulties for in-
ference. First, researchers typically observe a small number of networks in the data,
either because it is costly to acquire data on many networks or because the network
being studied only occurs in nature as a single large graph. In this case, treating the
network as the unit of observation is inappropriate, since this corresponds to a sam-
ple size of one. Instead, we would like to equate a large network with a large sample
size by treating the node as the unit of observation. This formally corresponds to
asymptotics under a sequence of models that sends the size of the network to infinity
(“large-market” asymptotics), rather than the number of networks (“many-market”
asymptotics). This is a challenging statistical problem because network externali-
ties induce correlation between links, and limit theory usually requires some form of
independence for a central limit theorem to be valid.

The second fundamental difficulty is that the presence of network externalities
typically renders the model incomplete because for any draw of node attributes W ,
there may be multiple networks G that satisfy the system of equations implied by
(1). This is the same problem we face in econometric supply and demand models
in which supply is linear and demand is backward-bending. Here, the system of
simultaneous equations predicts two possible market equilibria, and the equations
alone are uninformative for the realized equilibrium. Thus, in order to complete
the model, we must specify a selection mechanism that maps this set of possible
outcomes to a unique outcome, but theory provides little prior information on the
form of the selection mechanism. Without a formal model of equilibrium selection,
the inference procedure must account for the selection mechanism as an unknown
nuisance parameter.

Our solution to the first difficulty is to propose conditions under which network
dependence is sufficiently limited, establishing a law of large numbers and central
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limit theorem, which are basic building blocks for inference. Define node i’s node
statistic to be a function ψipGq that depends on G only through the subnetwork on
the component of node i, that is, the set of nodes that are connected (directly or
indirectly) to node i.1 Many sample analogs of network moments that are useful for
inference can be written as averages 1

n

řn
i“1 ψ

n
i pGq, but showing the consistency of

these estimators for their respective moments is nontrivial. A simple example is the
average degree, the average number of direct connections a node forms:

1

n

n
ÿ

i“1

ÿ

j‰i

Gij

loomoon

ψni pGq

.

Assuming expected degree is uniformly bounded, it is natural to expect that a law
of large numbers holds, and this average converges in probability to its expectation,
as n Ñ 8. However, this is only obvious if links are independent, which is not
necessarily true if network externalities exist. We derive conditions under which a
law of large numbers is valid. These conditions ensure that tψipGq; i P Nnu constitutes
an α-mixing random field, which formally means that the linking decisions of different
nodes are sufficiently uncorrelated.

A random field is a collection of random variables indexed by Rd, with the special
case of time series corresponding to d “ 1. Informally, a time series is mixing if
observations far apart in time are less correlated. Analogously, a random field is
mixing observations far apart in space are less correlated. If nodes are positioned in
some space, say, corresponding to geographic location, or any other set of attributes,
then three main conditions are needed for mixing. First, nodes are homophilous
in distance, meaning that nodes that are far apart in space (i.e. different in terms of
attributes) are unlikely to link. Second, the network is “diverse,” meaning that enough
nodes are sufficiently far apart in space. Third, for a given W and θ0, latent sets of
nodes that are not connected under any equilibrium network must form their links
independently, i.e. “isolated societies” of nodes do not “coordinate” on their linking
decisions. We formalize these conditions in the main text.

1Two nodes i and j are connected if there exists a path from i to j. A path from i to j is a
distinct sequence of nodes starting with i and ending with j such that for each k, k1 in this sequence,
Gk,k1 “ 1. For directed networks, this definition of connectivity corresponds to i and j being weakly
connected.
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The second fundamental difficulty results from the fact that for any given W

and θ0, multiple networks may satisfy the system of equations (1). Without further
restrictions, this typically implies that the structural parameter θ0 is only partially
identified, meaning that there may be a set of parameters consistent with the model
and the data, rather than a singleton. We derive moment inequalities implied by the
model that define an identified set. These moments are computationally tractable
and can be used to estimate the identified set and construct confidence intervals for
θ0. In particular, computation of the moments avoids a common curse of dimen-
sionality in the number of nodes (discussed in related literature below) under weaker
restrictions on network externalities than feasible alternatives in the literature. The
cost of computational tractability is that the identified set is conservative. However,
it is shown to be sharper than some existing alternatives.

Related literature. The literature on estimating models of network formation is
largely in its infancy. Central themes include (1) inference with only a single network
observation, (2) models with multiple equilibria, and (3) computational challenges.
The latter largely stem from the fact that the number of possible networks on n

nodes is on the order of 2n
2 , which exceeds the number of elementary particles in the

universe for n ą 30.
There is a growing econometric literature on estimating models of network for-

mation related to (1). The important work of Boucher and Mourifié (2013) appears
to be the first to suggest leveraging the machinery of random fields for estimating
network-formation models using a single network observation. However, they assume
the model has a unique equilibrium, which strongly restricts the class of estimable
models. For instance, none of the examples considered in this paper satisfy this
assumption. Our results also substantially broaden the class of estimable network
statistics beyond the score function, which is their primary focus. Other papers
that provide frequentist estimation procedures for related models when only a single
network is observed are Dzemski (2014), Graham (2014), and Leung (2014). Both
Dzemski and Graham consider models without externalities but allow for unrestricted
unobserved heterogeneity. Leung considers models with incomplete information.

Miyauchi (2013) and Sheng (2014) provide moment inequalities for inference in
model (1). Both assume that the econometrician observes many independent net-
works. Miyauchi’s moments require computing a set of equilibrium networks, which
suffers from a curse of dimensionality in the number of nodes and therefore is only
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feasible for small networks. Sheng is the first to derive moment inequalities that avoid
this curse of dimensionality under a novel locality restriction on network externalities.
We show that there exists a much larger set of computable moment inequalities that
includes those developed by Sheng and therefore collectively defines a sharper iden-
tified set. We also show that the local externalities restriction can be substantially
weakened. While Sheng assumes that the latent index V n

ij p¨q depends on nodes at
most ` “ 2 links away from i or j, we provide a condition under which any ` ă 8
is feasible, significantly expanding the class of estimable models. Additionally, our
estimation procedure has the advantage of not requiring a nonparametric density
estimator.

A large statistics literature studies inference for random graph models, which are
alternative approaches to modeling network formation. In this literature, exponen-
tial random graph models (ERGMs) are the leading models for studying network
externalities. These models are typically estimated using Markov Chain Monte Carlo
(MCMC), but this procedure suffers from a curse of dimensionality in the number of
nodes and is therefore computationally infeasible in nontrivial models for networks
even of moderate size (Bhamidi et al., 2011). Formal asymptotic theory for estimat-
ing ERGMs has recently been developed by Chandrasekhar and Jackson (2014), who
consider the case of a single network observation. Importantly, they derive a new
inference procedure that avoids the curse of dimensionality faced by MCMC.

There is also an econometric literature on estimating dynamic network-formation
models, which augment model (1) with a meeting technology that determines how
nodes form links sequentially over time. In some sense, this can be thought of as a
restriction on the equilibrium selection mechanism. Much of this literature focuses
on inference when the econometrician observes a single network, and most adopt
Bayesian estimation techniques for this purpose (Christakis et al., 2010; Hsieh and
Lee, 2012; Mele, 2013). The models studied in the latter two papers induce likelihoods
that reduce to ERGMs, and consequently, their inference procedures based on MCMC
are limited by a curse of dimensionality. Chandrasekhar and Jackson (2014) show
that a class of dynamic models of network formation can microfound the random
graph models they study. Relative to our approach, these models require stronger
separability assumptions on the latent index V n

ij p¨q and do not allow for unobserved
heterogeneity. On the other hand, they do not require many of the conditions we
impose for valid inference, such as homophily or diversity.
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Our model is related to the large literature on estimating games of complete
information (e.g. Bajari et al., 2010; Bresnahan and Reiss, 1990; Ciliberto and Tamer,
2009; Galichon and Henry, 2011; Tamer, 2003). Several of these papers develop
inference procedures based on moment inequalities (Beresteanu et al., 2011; Galichon
and Henry, 2011; Henry et al., forthcoming), but most require computing the set
of equilibria, which is computationally infeasible for even moderately large games.
Our procedure avoids having to compute this set. Most papers in this literature
consider many-market asymptotics, but there are several exceptions (Agarwal and
Diamond, 2014; Bisin et al., 2011; Fox, 2010; Menzel, 2014a,b; Song, 2012). These
papers either study matching or peer-effects models, which do not include models of
network formation with network externalities.

In the next section, we discuss our model and an overview of our approach in the
context of two motivating examples. We discuss in detail the economic interpretation
of the assumptions we impose on the model to limit the extent of network dependence.
Section 2 formally presents these assumptions and the main result, a law of large
numbers and central limit theorem for network statistics. We develop our inference
procedure in section 3, first discussing the construction of moment inequalities and
then turning to implementation. Section 4 concludes.

Notation. For any set A, |A| denotes its cardinality, 2A the set of all subsets of
A, and Ac the complement of A. For any sets S0 and S1 with S0 Ď S1, S1zS0 “ ts P

S1 : s R S0u. For x “ px1, . . . , xdq P Rd, ||x|| is the supremum norm of x, equal to
maxiPt1,...,du |xi|. Random variables are represented using upper-case letters and their
realizations using lower-case letters.

2 Asymptotics for Network Statistics

Let Nn “ t1, . . . , nu be the set of node labels. A node i is endowed with a position
ρi P Rdρ and attributes Xi P Rdx . Positions are special attributes in which we will
require nodes to be homophilous, such as geographic location. For this purpose, let
δij “ p|ρi1 ´ ρj1|, . . . , |ρidρ ´ ρjdρ |q. We interpret ||δij|| as the dissimilarity between
nodes with respect to positions, which will play a crucial role in obtaining a central
limit theorem. Positions are considered pre-determined, and assumptions in Section
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2 will ensure that positions are sufficiently scattered in Rdρ .2

Each pair of nodes is endowed with a vector of pair-specific attributes ζij P Rdζ ,
e.g. an idiosyncratic pair-level shock that captures meeting opportunities. We define
W “

`

pρi, ρj, Xi, Xj, ζijq; i, j P Nn
˘

, the set of all node primitives. For A Ď Nn, let
WA “

`

pρi, ρj, Xi, Xj, ζijq; i, j P A
˘

, the submatrix of W associated with nodes in A.
Let Zij “ pXi, Xj, ζijq, the vector of “exogenous factors” associated with pair pi, jq.
We require a standard restriction on the joint distribution of attributes.

Assumption 1. For any n and A,A1 Ď Nn disjoint, WA KK WA1.

The econometrician observes positions and subvectors of Xi and ζij, denoted Xo
i

and ζoij. We denote the unobserved remainders of Xi and ζij, respectively, by Xu
i and

ζuij. The econometrician also observes a network G P Gn, the set of n ˆ n matrices
with 0-1 entries. We call Gij, the ijth entry of G, the potential link between i and j.

We study the latent-index model of link formation

Gij “ 1 if and only if V n
ij pG,W ; θ0q ě 0,

where V n
ij p¨q is known up to the parameter θ0 P Θ Ď Rdt .3 In this model, a link forms

between i and j if and only if the pair’s latent index V n
ij p¨q is nonnegative. In the

case of undirected networks, this index can be interpreted as the joint surplus that
“agents” i and j jointly enjoy from the addition of link Gij, taking as given the rest
of the network. Hence, (1) is a generalization of discrete-choice models that allows
the formation of a link between i and j to depend on the presence of links between
other nodes. We will refer to any network G that satisfies the inequalities defined by
(1) for a given W and θ as an equilibrium.

Clearly, the model can be microfounded as a game of complete information in
which the solution concept is pairwise-stable equilibrium with transfers; see e.g. Sheng
(2014), Definition 2. The analysis in this paper can easily be extended to non-
transferable utility, as well. In the case of directed networks, (1) is a consequence
of Nash equilibrium play in a static link announcement game (Myerson, 1977).

2Non-random positions is the standard framework used in the literature on random fields. This
is analogous to time-series settings where random variables are associated with fixed positions in
time.

3When the network is undirected, it is sensible to assume V nij pG,W ; θ0q “ V njipG,W ; θ0q and
ζij “ ζji.
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Our main object of interest are averages of certain node statistics, which serve as esti-
mators for subnetwork moments used for inference. In order to define these statistics,
we first need some additional notation. The component of a network G is subnetwork
such that any two nodes are connected in G. For a given G, denote by CipGq the size
of the maximal component that contains i, which is the largest set of nodes containing
i that forms a network component. For brevity, we often refer to CipGq simply as i’s
component. Also let CijpGq “ CipGq Y CjpGq. For any A Ď Nn, define GA as the
submatrix of G corresponding only to links between nodes in A and GA as the set
of labeled networks on A. Let G´A ” tGij : i, j P Nn, not both in Au be the set of
links in G, excluding links between nodes in A. For i, j P Nn, define ti Ø ju as the
event that i and j are connected in network G, leaving the network implicit in the
definition.

With these definitions in hand, we can associate with each i P Nn a node statistic
ψni ” ψni pG,W q for some known function ψni such that ψni pG,W q “ ψni pG

1,W 1q for
any pG,W q, pG1,W 1q such that GCipGq “ G1CipG1q and WCipGq “ W 1

CipG1q
. In other

words, ψni only depends on the links and the attributes of the nodes in i’s component.
We aim to provide conditions under which the triangular array tψni ; i P Nn, n P Nu
is an α-mixing random field. This ensures that averages 1

n

řn
i“1 ψ

n
i , which we term

network statistics, are consistent for their expectations and asymptotically normal by
a law of large numbers and central limit theorem for random fields, results that are
necessary for inference on θ0.

In a directed network in which links represent, say, lending relationships, some
simple examples of moments we may like to estimate include PpGij “ 1, Gji“ 0q (uni-
directional lending) and PpGij “Gji“ 1q (bidirectional lending), which intuitively
help to identify reciprocity, the intrinsic tendency for i to lend to j if j lends to
i. Their sample analogs are examples of network statistics 1

n

ř

i ψipGq mentioned in
the introduction, where ψipGq only depends on G through i’s network component.
For example, in the case of the bidirectional referral probability, the node statistic
ψipGq “

1
2

ř

j GijGji, and Er 1
2n

ř

i,j GijGjis “
1
n

ř

i,jąiPpGij “Gji“ 1q.4

With many independent networks, these moments are easily estimated by their
sample analogs. However, with only a single network, consistency requires sufficient

4Note that even though ψipGq is a sum over n elements, it does not grow arbitrarily large as
nÑ8 because the network is sparse, both empirically in most social networks and theoretically in
a sense described later.
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independence in the network for a law of large numbers. This holds if the node
statistics ψipG,W q are uncorrelated enough in the sense of α-mixing, which we now
define.

Let tψni ; i P Nn, n P Nu be a triangular array on the probability space pΩ,F ,Pq.
For A,A1 Ď Nn, let dpA,A1q “ inft||δij||; i P A, j P A

1u, and let σpψni ; i P Aq denote
the σ-algebra generated by the vector pψni ; i P Aq. Define

αnpA,A
1
q “ supt|PpH XH 1

q ´PpHqPpH 1
q|;H P σpψni ; i P Aq, H 1

P σpψni ; i P A1qu,

αa,a1,nprq “ sup tαnpA,A
1
q; |A| ď a, |A1| ď a1, dpA,A1q ě ru ,

ᾱa,a1prq “ sup
n
αa,a1,nprq.

The mixing coefficient αnpA,A1q is a measure of dependence between the node statis-
tics of nodes in A and A1. This measure lies in r0, 1s, with zero corresponding to
independence and departures from zero signifying dependence. For a CLT, we need
ᾱa,a1prq Ñ 0 at a fast enough rate as the dissimilarity r goes to infinity. This is the
spatial analog of the usual idea in time series that observations that are distant in
time should be close to independent.

Definition 1 (α-Mixing). The triangular array tψni ; i P Nn, n P Nu is an α-mixing
random field if its α-mixing coefficient satisfies ᾱa,a1prq ď Cpa` a1qχα̂prq with α̂prq “
Opr´dρp2η`1q´κq for some C ă 8, η ě maxtχ, 1u, κ ą 0.

The central difficulty is that with network externalities, links can be highly de-
pendent, meaning that the mixing coefficient is far from zero for most pairs. We next
detail a set of conditions that are sufficient for the set of node statistics to constitute
an α-mixing random field.

2.1 Latent Index

The first set of assumptions are restrictions on the latent index V n
ij p¨q.

Assumption 2 (Specification). There exists E Ď RdE such that the following hold.

(a) For any n P N and i, j P Nn, there exists Enijp¨, ¨q with range E such that
V n
ij pG,W ; θq “ Vijpδij, EnijpG,W q, Zij; θq.
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(b) Let Ek be the kth dimension of E. If for all i, j P N, Vijp¨q is increasing in the kth
component of EnijpG,W q, then Ek is bounded above. Otherwise, Ek is bounded.

For ease of notation, we will often abbreviate Enij “ EnijpG,W q.

Assumption 2 requires that the latent index for nodes i and j is a function of a finite-
dimensional vector of factors pδij, Enij, Zijq. We refer to Enij as endogenous factors and
to Zij as exogenous factors, so called because the former depend on the endogenous
network G, while the latter do not. The most substantive requirement is Assumption
2(b), that the endogenous factors are uniformly bounded, which is needed to ensure
that the latent index does not diverge to infinity with n. If Vijp¨q is increasing in
an endogenous factor for all pairs pi, jq, then we only require boundedness above.
This allows for cost functions that depend on G. For example, it is often reasonable
to impose a capacity constraint, which is the constraint that no node has degree
exceeding D̄ ă 8. This can be modeled, for example, as a function

cpGiq “

#

0 if
ř

j Gij ď D̄

´8 if otherwise
(2)

where Gi is the vector of links pGij; j P Nnq. If cpGiq is a component of Enij, then it is
natural to assume Vij is increasing in cp¨q. Evidently, cp¨q is bounded above, so this
satisfies Assumption 2(b).

Assumption 2 is satisfied by many endogenous factors of interest, such as 1tiØ ju.
Other factors, such as the number of common friends that i and j share,

ř

kGikGjk,
may be bounded above under a capacity constraint. If such a constraint is inap-
propriate, then an alternative is to scale factors by the rate at which they diverge.
For instance, while i’s degree violates the assumption when degree diverges at rate
n, i’s average degree, 1

n

ř

j Gij, does not. Even with a capacity constraint, uniform
boundedness does rule out endogenous factors such as the total income of i’s friends,
řn
j“1GijMj, where Mj is the income of node j, if one is unwilling to assume that

income has bounded support. We next provide additional examples of endogenous
factors.

Example 1. Suppose G represents a friendship network, and Gij “ 1 if individuals
i and j are friends. Let Mi be individual i’s income, Ai her age, and αi her latent
gregariousness. The econometrician only observes the subvector pMi, Aiq for each i.
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Define c˚pGi, Gjq “ cpGiq ` cpGjq, where cp¨q is defined in (2). The model is

V n
ij pG,W ; θq “ θ1 ` θ2|Mi ´Mj| ` θ3pAi ` Ajq ` θ41tD k : Gik“Gjk“ 1u

` θ5

ÿ

k‰i,j

Gkj ` c
˚
pGi, Gjq ` αi ` αj ` ζij.

The parameter θ2 captures homophily in income. The parameter θ4 captures transi-
tivity or clustering, the tendency for individuals with friends in common to become
friends. The importance of transitivity is widely recognized (see e.g. Christakis et al.,
2010; Goldsmith-Pinkham and Imbens, 2013; Jackson, 2008). The parameter θ5 rep-
resents the importance of popularity; if θ5 ą 0, then individuals prefer to be friends
with those who have many friends. The cost function enforces a capacity constraint,
limiting the total number of links a node can form. This is intuitive, since we expect
that people have a finite capacity to form friendships. Finally, the random effects αi
and αj allow for degree heterogeneity (Graham, 2013), the unobserved tendency for
some individuals to form more links than others.

The next assumption says that Enij only depends on G and W through the sub-
network formed on the components of i and j and the attributes of these nodes.

Assumption 3 (Component Externalities). Let G,W and G1,W 1 satisfy GCijpGq “

G1CijpG1q and WCijpGq “ W 1
CijpG1q

. Then EnijpG,W q “ EnijpG1,W 1q for any i, j P Nn and
n P N.

This is a commonly satisfied requirement. The model in Example 1 satisfies this
condition, since Vijp¨q only depends on nodes at most one link away, whereas compo-
nent externalities allows Vijp¨q to depend on nodes any finite number of links away.
This condition also permits the latent index to depend on the path distance between
two nodes or a node’s Bonacich centrality. Generally, Assumptions 2 and 3 are weak
and allow for a broad spectrum of network externalities, including those studied in
Boucher and Mourifié (2013), Christakis et al. (2010), Goldsmith-Pinkham and Im-
bens (2013), Mele (2013), Miyauchi (2013), and Sheng (2014).

The next assumption serves two purposes. First, it imposes a restriction on the
tails of the distributions of attributes, essentially requiring that large realizations of
attributes are rare. Second, it formally defines homophily.
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Assumption 4. There exist τ : R` Ñ R`, Cx : R` Ñ 2Rdx , and Cζ : R` Ñ 2Rdζ such
that Cx and Cζ are nonempty, nondecreasing, set-valued functions and the following
conditions hold.5

(a) (Tails) For all r,

max

"

sup
n

max
iPNn

P
`

Xi R Cxprq
˘

, sup
n

max
i,jPNn

P
`

ζij R Cζprq
˘

*

ď τprq,

and τprqr5dρ`ϕ rÑ8
ÝÑ c ě 0 for some φ ą 0.

(b) (Homophily) Define Cp¨q “ Cxp¨q ˆ Cxp¨q ˆ Cζp¨q. For any Rdρ-valued sequence
tδmu

8
m“0 with ||δm|| Ñ 8 and any θ P Θ,

lim sup
mÑ8

max
i,jPN

sup
EPE

sup
zPCp||δm||q

Vij
`

δm, E , z; θ
˘

ă 0,

The function τ controls the rarity of large draws of ζij and Xi, where largeness is
measured by the complement of the set Cp¨q. The requirement that τprqr5dρ`ϕ Ñ c ě 0

formalizes rarity; the tails of ζij cannot be too heavy in the sense of containing too
much probability mass. For example, if ζij is scalar and its distribution belongs in
the exponential family, then part (a) is satisfied for Cζprq “ r´r, rs and τprq “ Ce´r

for some C ą 0. Hence, if ζij captures idiosyncratic meetings between individuals
that predispose them to form friendships, then this means that such meetings occur
infrequently in the population, which is sensible given that in most social networks,
the typical number of friends is much smaller than the universe of potential friends.
This condition is important because large draws of ζij work against homophily; pairs
with a high pair-specific value from linking may form a connection even if they are
extremely dissimilar. Since our goal is to limit network dependence by restricting the
connectivity of the network through homophily, it is therefore important to control
the probability of large realizations of ζij.

Assumption 4(b) captures homophily, the principle that “similarity breeds con-
nection,” which is ubiquitous in social networks (McPherson, Smith-Lovin and Cook,
2001). It is formalized here by requiring that the latent index diverges to negative
infinity with dissimilarity. Hence, nodes are disinclined to link with highly dissimilar
nodes. Note that in Example 1, a necessary condition for homophily is θ2 ă 0.

5A set-valued function C : RÑ 2R
k

is nondecreasing if r ă r1 implies Cprq Ď Cpr1q.
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Homophily relates to the tails condition due to the presence of Cp¨q in the supre-
mum. First consider the simple case in which Xi and ζij have bounded support.
Then we can take Cp¨q to be the Cartesian product of their supports, so that Cprq
is identical for all r. Part (b) says that highly dissimilar nodes prefer not to link
even if the endogenous and exogenous factors take on values in their supports that
are most favorable for link formation. Thus, as two nodes move apart, there must a
point at which the “disutility” from being too far apart dominates all other incentives
for link formation. The purpose of the set-valued function Cp¨q is to allow Zij to have
components with full support. In part (b), we restrict the values of Zij to be at their
most favorable for link formation within the constraint set Cp¨q. This set can grow
with dissimilarity δij but not so quickly that it overtakes the effect of homophily. Part
(a) ensures that Zij lies in this set with high probability. Hence, the idea is to ensure
that large realizations of the attributes are rare in order for homophily to dominate.

2.2 Diversity

The next pair of assumptions require nodes to be sufficiently dissimilar from one
another in terms of positions. For n P N and i P Nn, let Biprq “ tj : j P Nn, ||δij|| ă
ru.

Assumption 5 (Increasing Domain). For some r0 ą 0, supn maxiPNn
ˇ

ˇBipr0q
ˇ

ˇ ă 8.
Without loss of generality, normalize r0 “ 1.

This is a generalization of the increasing-domain condition used in asymptotics for
random fields (e.g. Assumption 1 of Jenish and Prucha, 2009) that allows a small
number nodes to have the same position but requires most pairs of nodes to have a
minimum amount of dissimilarity r0. Increasing-domain asymptotics in turn gener-
alizes the usual assumption in time series that time periods are located in N, which
ensures that observations are spread out in time, rather than packed in a fixed interval.
In part, this assumption ensures that homophily (Assumption 4(b)) is meaningful,
since it would play little role in link formation if all nodes had similar positions.

Remark 1 (Network Sparsity). We show in Proposition B.1 that under Assumptions
1, 2, 4, and 5, the average expected degree is uniformly bounded over n. That is, of
all the potential links a node may form, the fraction of links that do form is vanishing
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in n. Intuitively, increasing domain ensures that nodes are spread out in Rdρ , and
homophily implies that nodes are unlikely to link with distant nodes. Hence, from
the perspective of a given node, most other nodes are undesirable. Bounded expected
degree matches the stylized fact that most social networks are sparse (Chandrasekhar,
2014). By comparison, some procedures for estimating network-formation models
require the network to be dense, meaning that the degree of a node is order n, e.g.
Graham (2014).

The increasing-domain assumption only requires nodes to be minimally different,
allowing nodes to be evenly spaced apart in Z2, for example. From the bond per-
colation literature we know that this is insufficient to obtain Ppi Ø jq Ñ 0. The
canonical model in that literature assumes that nodes are positioned on the integer
lattice and requires an extreme form of homophily in which nodes can only link with
unit-adjacent nodes. In contrast, we allow for a weaker form of homophily; indeed,
any pair of nodes may link with positive probability in any finite network. Hence, we
instead take the approach of requiring a stronger form of dissimilarity. The next con-
dition strengthens increasing domain and posits that larger sets of nodes are relatively
more diverse or dissimilar.

Assumption 6 (Diversity). There exists γ : R` Ñ R` with γprq ă r satisfying the
following conditions.

(a) For any n P N and i, j P Nn, there exists a set Γij Ď Bipδijq such that

min t||`1 ´ `2||; `1 P Γij, `2 P tρiu
n
i“1zΓiju ě γp||δij||q.

(b) For τp¨q defined in Assumption 4, there exists µ, ϕ ą 0 such that γprqdρτpγprqq ď
µr´4dρ´ϕ.

Condition (a) says that if i and j are a distance r apart, then any node positioned
within Γij is at least γprq apart from any node outside of this set (Figure 1). In
our empirical application, we have around 120,000 PCPs dispersed across the eastern
U.S., so the diversity assumption is a reasonable approximation. Combined with
Assumption 5, this implies that nodes are increasingly spaced apart as n Ñ 8. The
key implication of (a) is that if i and j are connected, then there must be a linked
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pair of nodes on any path from i to j such that these nodes have dissimilarity at least
γp||δij||q. This limits the number of network paths that can possibly form between
any two sufficiently dissimilar nodes, which is important for deriving a uniform bound
on the probability that two nodes i and j are connected when ||δij|| is large.

r

9 log r1

Figure 1: Visual depiction of diversity. If node i is the green node on the left and j
the green node on the right, then the red circle is the j-neighborhood of i.

Remark 2 (Recursion for Diversity). We show how a set of positions satisfying
diversity for a given γp¨q can be generated recursively in R2, starting from the level
of “sites,” balls of diameter r0 containing a small number of positions. This also helps
to visualize sets of node positions satisfying Assumption 6. Figure 2 illustrates the
recursion described below.

Step 1. Begin the recursion with one site, say, centered at the origin. This is the
green site in Figure 2.

Step 2. Compute the circle of closest possible locations for a second site such
that Assumptions 5 and 6(a) are satisfied. The largest possible distance between
two points in each site is 2r0 ` a, so the smallest possible distance between the sites
consistent with diversity is the number a satisfying a “ γp2r0`aq. Then the circle of
possible locations is the circumference of the ball with radius a ` r0

2
centered at the

origin. Place, say, four replicas of the original site tangent to this ball, as depicted by
the red sites in Figure 2. The choice of four replicas is a conservative way to ensure
that all sites are at distance a away from each other.

Step 3. Treat the set of all existing sites from previous steps as a single site, and
repeat step 2. This results in the blue sites, as depicted in Figure 2.

Lastly, repeat step 3 as many times as desired. The rate at which the distances a
increase at each step of the recursion is implicitly determined by γp¨q.
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1

2

3

r
0

a

Figure 2: Diversity recursion.

Assumption 6(b) relates the tail probability τ in Assumption 4(a) to γp¨q in As-
sumption 6(a). This condition ensures that network dependence is sufficiently limited,
i.e. that the α-mixing coefficient decays at a fast enough rate. To get a sense of how
this relates to Assumption 4, which also restricts τp¨q and ϕ, consider three cases.

• If attributes have exponential tails such that τprq “ Ce´κr for some C, κ ą 0,
then condition (b) is satisfied with γprq “ maxt

`

p4dρ ` ϕ` 1qκ´1
˘

log r ´ ε, 0u

for any ε P R. Thus, if tails are thin, then γp¨q is logarithmically increasing.

• If τprq “ r´κ (heavy tails), then γprq must be of order rc for c “ 4dρ`ϕ

κ´dρ
. If

κ “ 5dρ ` ϕ, then γprq is order r. Since γprq ă r necessarily, this implies that
τprq cannot be of asymptotic order smaller than r´5dρ´ϕ, meaning that tails
cannot be too heavy for any γp¨q.

• If the support of Zij bounded, then τprq “ 0 for r sufficiently large, and γprq can
be constant in r once r is large enough. This occurs because the latent index
is uniformly bounded above in this case, and once dissimilarity exceeds that
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uniform bound, no links form with probability one. Hence, this is essentially
the case of many independent networks.6

2.3 Selection Mechanism

As previously mentioned, the model is generally incomplete because for any given
W , multiple networks can be consistent with (1). To complete the model, we must
specify a mapping from the primitives to a particular outcome network. This is the
function of the selection mechanism, which can be interpreted as a formal description
of how nodes coordinate on a particular equilibrium network. The next assumption
is a restriction the selection mechanism.

We need a few definitions first. Define GNnpW, θq to be the correspondence that
maps pW, θq to the set of equilibrium networks on Nn. For any A Ď Nn, we call
tGA : G P GNnpW, θqu the set of equilibrium subnetworks on A. In order to define
the selection mechanism, we introduce a random vector ν ” νNn , unobserved by the
econometrician, which functions as a public signal that nodes may use to coordinate
on equilibrium networks. It may be depend on θ but is independent ofW . As a simple
example, suppose for some givenW and θ there are two possible equilibrium networks.
Nodes might decide to play a particular network by flipping a coin, the outcome of
which we can encode in ν. Thus, ν is an unobservable that does not directly enter
the latent index but affects the outcome through the selection mechanism.

Definition 2. The selection mechanism is a function λNn : pW, ν, θq ÞÑ G P GNnpW, θq.7

This says that nodes coordinate on a equilibrium network according to some function
λNn , using signals W and ν, which are “common knowledge.”

The set of networks GNnpW, θq defines a latent partition of Nn such that nodes
in the same partition are connected under some equilibrium network, and nodes in

6Strictly speaking, there can still be correlation between the unconnected components, as we
clarify in the next section. In order to have full independence, Assumption 7(c) below, is also
needed.

7The selection mechanism is more commonly defined as a mapping from W, θ to distributions
over GNn

pW, θq. We opt for a different definition in order to make explicit the residual randomness ν
that governs selection. The implicit assumption is that ν is defined on the same probability space as
W , which therefore ensures that elements of the triangular array tψni ; i P Nn, n P Nu are defined on
the same probability space. This is needed in order to apply the limit results of Jenish and Prucha
(2009). Furthermore, it can be shown that any distribution over GNnpW, θq can be generated by
some pλNn

, νq, so our construction is without loss of generality.
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different partitions are not connected under any equilibrium network. It is important
to note that this partition dependsW and θ, since it is defined by a set of equilibrium
networks. Moreover, this partition is unobserved, since W depends on unobservables.
We refer to elements of this partition as isolated societies.

Definition 3 (Isolated Societies). Let SpW, θq be the (unique) partition of Nn such
that for any S, S 1 P SpW, θq with S ‰ S 1, if i, j P S and k P S 1, then there exists
G P GNnpW, θq such that i Ø j, and there does not exist G P GNnpW, θq such that
iØ k.

Example 2. Consider model the model

V n
ij pG,W ; θq “ θ1 ` θ2δij ` θ3Gji ` εij,

where δij is the geographic distance between nodes i and j. Suppose there are only
four nodes, with ρ1 “ 1, ρ2 “ 2, ρ3 “ 10, and ρ4 “ 11. Let θ “ p0,´1, 2q. If εij “ 0

for all i, j “ 1, . . . , 4, then there are two isolated societies: t1, 2u and t3, 4u. This is
because there exists an equilibrium subnetwork on each of these pairs such that each
node in the pair links to the other. However, due to the distance between nodes 1
and 2 and nodes 3 and 4, no node in t1, 2u ever obtains positive value from linking
to a node in t3, 4u, so the two societies are isolated.

Now suppose that εij ą 7 if i P t1, 2u and j P t3, 4u and εij “ 0 otherwise. Then
all four nodes are part of the same isolated society, since it is an equilibrium for pairs
p1, 3q, p2, 4q, p1, 2q, and p3, 4q to be linked bidirectionally.

Due to component externalities (Assumption 3), the subnetwork formed by nodes
in a society S does not enter the latent index of nodes in another society S 1 because
the two are not connected in equilibrium. Intuitively, then, we might expect that
nodes in different societies should form subnetworks independently. However, there
exist selection mechanisms such that S and S 1 still “coordinate” on the subnetworks
they form, despite being isolated. That is, the equilibrium subnetworks selected by
different societies may be statistically dependent. To see this, consider a six-node
model in which, for some fixed W , two triplets form isolated societies, which we will
call “blue” and “red.” Further suppose that each isolated society has two possible
equilibrium subnetworks: the fully connected subnetwork and the empty subnetwork.
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Figure 3: Global coordination.

Then there are four possible equilibrium networks in the overall network, displayed
in Figure 3. Consider the selection mechanism that selects the network in the top-left
panel with probability 1

2
and the network in the bottom-right panel with probability

1
2
. Then the equilibrium subnetworks selected by the two societies are perfectly

correlated.
The next assumption rules out this type of coordination, requiring that the selec-

tion mechanism chooses from GNnpW, θq by independently randomizing over equilib-
rium subnetworks in GSpWS, θq for each S P SpW, θq. (Note that GSpWS, θq is the set
of equilibrium networks on S if the only nodes present were those in S.) Independent
selection is an intuitive requirement, since (a) isolated societies are unconnected, and
(b) Assumption 3 implies that the subnetworks formed by unconnected nodes are not
payoff-relevant, and therefore, isolated societies have no incentive to coordinate.

We need one last piece of notation. For S P SpW, θq, let λNnpW, ν, θq
ˇ

ˇ

S
be the re-

striction of the range of λNn toGS. This restricted range equals tGS : G P GNnpW, θqu,
which by Assumption 3 equals GSpWS, θq.

Assumption 7 (Selection Mechanism). There exist a sequence of selection mecha-
nisms tλNnu8n“2 and random vectors tνNnu8n“2 such that, for n sufficiently large, the
following hold with probability one.

(a) (Coherence) |GNnpW, θ0q| ě 1.

(b) (Rationalizability) For g P Gn,

PpG “ g |W q “ PpλNnpW, νNn , θ0q “ g |W q.
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(c) (No Coordination) There exist selection mechanisms tλS;S P SpW, θ0qu and
independent random variables tνku

|SpW,θ0q|
k“1 independent of W , such that for all

S P SpW, θ0q

λNnpW, νNn , θ0q
ˇ

ˇ

S
“ λSpWS, νS, θ0q.

Part (a) ensures that, under θ0, each W is mapped to some G, meaning that the
set of equilibrium networks is nonempty, which guarantees that ψni is well defined.
Sheng (2014) provides sufficient conditions for coherence. Condition (b) defines the
selection mechanism, requiring that the true data generating process is rationalized
by model (1) and some selection mechanism. Condition (c) restricts the sequence
of selection mechanisms over n, requiring that, for each W , isolated societies choose
their subnetworks according to independent subnetwork selection mechanisms. Fur-
thermore, the independence restriction on the society-specific signals νS ensures that
isolated societies do not coordinate in the sense that the realizations of their respec-
tive subnetworks are independent. Thus, if i R S P SpW, θq, then members of S play
a particular subnetwork irrespective of the realizations of the subnetwork and the at-
tributes of nodes in i’s society. Note that it is well defined to select the entire network
by selecting subnetworks on isolated societies, as dictated by (c), since GSpWS, θ0q is
the range of λSpWS, νS, θ0q, and as previously argued, this is equivalent to the range
of λNnpW, ν, θ0q

ˇ

ˇ

S
.

It is useful to compare (c) with the standard independent sampling framework
in which the econometrician observes many independent networks. We can view the
union of these networks as a single large network. In our framework, the underly-
ing independent subnetworks are the isolated societies SpW, θq, which are unknown,
since W contains unobservables. Thus, assuming that two observed subnetworks are
independent, as in the standard many-markets framework, requires additional knowl-
edge about the isolated societies. Specifically, the econometrician must posit that (a)
nodes in the two subnetworks can never be linked to each other, and (b) nodes in these
subnetworks do not coordinate. These assumptions imply that under many-market
asymptotics, the econometrician has knowledge of a potentially coarser partition of
nodes than SpW, θq, such that the elements of this partition are unions of isolated
societies. In contrast, our approach requires no knowledge of SpW, θq. In practice,
this eliminates the need in the many-markets framework to manually partition the
observed network into many independent subnetworks in order to generate multiple
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“observations.”

2.4 Main Results

We can now state the core theorem of the paper.

Theorem 1. Under Assumptions 1-7, tψni ; i P Nn, n P Nu is an α-mixing random
field.

The intuition behind the result is that as the dissimilarity between nodes i and j

grows,

(i) the probability that they are connected is small, and

(ii) if they are unconnected, their referral decisions, and thus their node statistics,
should be independent.

Hence, we should expect that the mixing coefficient vanishes as the dissimilarity
diverges. This intuition can be formalized by decomposing the mixing coefficient into
two components. Using the law of total probability, it is not difficult to show that

ᾱ1,1

`

||δij||
˘

ď 3PpiØ jq ` ᾱ1,1

`

||δij||
ˇ

ˇ iÜ j
˘

, (3)

where ᾱ1,1

`

||δij||
ˇ

ˇ iÜ j
˘

is the conditional mixing coefficient with the unconditional
probabilities in the definition replaced with probabilities conditional on the event that
the two nodes are disconnected. This captures the extent to which isolated societies
(disconnected sets of nodes) “coordinate.” To show that the mixing coefficieent van-
ishes, it suffices to show that the two elements on the right of (3) decay to zero.
The intuition of (i) corresponds to Ppi Ø jq Ñ 0 and is ensured by homophily (As-
sumption 4), which states that the probability a pair of nodes is connected decreases
as the nodes become more dissimilar, and diversity (Assumption 6), which ensures
sufficient dissimilarity in the network. The intuition of (ii) corresponds to setting
ᾱ1,1

`

||δij||
ˇ

ˇ iÜ j
˘

“ 0, which is ensured by component externalities (Assumption 3)
and no coordination (Assumption 7(c)). These imply that network components are
independent, conditional on the nodes being unconnected. The formal proof shows
that the probability that two nodes are connected is vanishing at a sufficiently fast
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rate in the distance between the nodes. The tail condition (Assumption 4(a)) and
the rate condition (Assumption 6(b)) play crucial roles here.

To understand why diversity is important to ensure that PpiØ jq Ñ 0 as δij Ñ 8,
notice that the connection probability is the union of an extremely large number of
events:

PpiØ jq “ P

¨

˚

˚

˚

˚

˚

˚

˚

˝

n´1
ď

`“1
loomoon

path length

ď

k0,...,k`PNn:
k0“i,k`“j
loooomoooon

nodes in path

 

Gk0,k1 “ ¨ ¨ ¨ “ Gk`´1,k` “ 1
(

˛

‹

‹

‹

‹

‹

‹

‹

‚

. (4)

That is, there are many possible paths that can connect a pair of nodes. For example,
for 10 nodes, there are 1012 possible paths connecting any two nodes. We cannot
bound this probability using the usual the union bound, since the number of events in
this union is too large, more than exponential in n. Diversity allows us to significantly
reduce the number of events in this union in order to apply the union bound. To see
this, let Γij “ tk P Nn : ||δik|| ď ||δij||u. Diversity implies that if nodes i and j

are connected, then some pair of directly linked nodes pk, lq along that chain, with
k P Γij, must be approximately γ

`

δij||
˘

apart. Thus,

(4) ď P

¨

˚

˚

˚

˚

˝

ď

k,l: kPΓij ,

δklěγ
`

δij ||
˘

 

Gkl “ 1
(

˛

‹

‹

‹

‹

‚

. (5)

This significantly reduces the number of events in the union. We can then apply the
union bound:

(5) ď
ÿ

kPΓij

n
ÿ

l“1

P
`

Gkl “ 1 | δkl ě γ
`

δij||
˘˘

ď
`

#k P Γij
˘

max
k

8
ÿ

l“1

P
`

Gkl “ 1 | δkl ě γ
`

δij||
˘˘

. (6)

It remains to show that the right-hand side of the last expression converges to zero
as ||δij|| Ñ 8. Intuitively, for a fixed node k, as the sum over l ranges over nodes
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increasingly distant from k, the summands on the RHS should be progressively de-
caying to zero. This is because, by homophily and the tails condition, Gkl is unlikely
to equal one if k and l are far apart. Hence, the series remains finite for any ||δij||.
Furthermore, as ||δij|| Ñ 8, the conditions ensure that the entire summation decays
to zero by homophily, and at a rate faster than the growth of the set Γij. Thus (6) is
shrinking to zero, ensuring that PpiØ jq Ñ 0 as ||δij|| Ñ 8.

Having established α-mixing, a law of large numbers and central limit theorem
then follow from results in the spatial econometrics literature.

Theorem 2. Suppose that tψni ; i P Nn, n P Nu is an α-mixing random field and that
there exists an array of positive real constants tcni u such that

(a) limkÑ8 supn maxiPNn E

«

ˇ

ˇ

ˇ

ˇ

ψni
cni

ˇ

ˇ

ˇ

ˇ

3

1

"ˇ

ˇ

ˇ

ˇ

ψni
cni

ˇ

ˇ

ˇ

ˇ

ą k

*

ff

“ 0, and

(b) lim infnÑ8 σ
2
n{pnM

2
nq ą 0, where Mn “ maxi c

n
i and σ2

n “ Var p
ř

i ψ
n
i q.

Then 1
nMn

ř

ipψ
n
i ´ Eψni q

L1
ÝÑ 0 and σ´1

n

ř

i ψ
n
i

d
ÝÑ Np0, 1q.

Assumptions (a) and (b) are sufficient for a Lindeberg condition. The scaling con-
stants tcni u allow for asymptotically unbounded moments. If node statistics are
uniformly bounded, then we can take cni “ 1. Otherwise, we generally choose
cni “

a

Erpψni q
2s.

Remark 3. The class of network statistics for which Theorem 2 holds is quite general
and includes complex statistics such as the average clustering coefficient and average
path length. Define

ClipGq “

ř

j‰i;k‰j;k‰iGijGikGjk
ř

j‰i;k‰j;k‰iGijGik

.

This is the proportion of nodes link to i that are also linked to each other, with
the convention that ClipGq :“ 0 if i has at most one link. The average clustering
coefficient ofG is 1

n

řn
i“1ClipGq. Here ψ

n
i “ ClipGq, andMn “ 1, since ClipGq P r0, 1s.

Let PlijpGq be the length of the shortest path between nodes i and j. The average
path length of G is then 1

nMn

řn´1
i“1

řn
j“i`1 PlijpGq. Here ψ

n
i “

řn
j“i`1 PlijpGq.

Theorem 2 is useful because it enables us to consistently estimate subnetwork
moments (expectations of network statistics), and certain moments can be used to
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Figure 4: Equivalence class of intransitive triads.

define an identified set for θ0. Before presenting these moments, we need a few
definitions. Two labeled subnetworks gA, g1A P GA are isomorphic (denoted gA „ g1A)
if there exists a permutation of the indices in A, denoted σpAq, such that gA “ g1σpAq.
The equivalence class of gA is tgS P GS : S Ď Nn, gA „ gSu. For example, in Figure 4,
we have three labeled subnetworks isomorphic to one another that together constitute
an equivalence class known as the intransitive triads.

The set of unlabeled subnetworks of size a, denoted Gu,a, is the set of equivalence
classes of subnetworks of size a. For example, Gu,3 consists of four equivalence classes:
the empty network, the network with only one link, the network with only two links
(intransitive triads), and the fully connected network (transitive triads). We are
interested in the subset of Gu,a consisting only of connected subnetworks, which we
denote by GØ

u,a. Relative to Gu,a, this set does not contain subnetworks with isolated
nodes. Thus, for a “ 3, GØ

u,a only consists of two elements: the intransitive triads
and the transitive triads.

Let ga P GØ
u,a. Then for |A| “ a, PpGA P gaq is the probability that the set of

nodes on A forms a subnetwork in the equivalence class ga. For example, if g3 is
the equivalence class of intransitive triads, PpGti,j,ku P g3q “ PpGijGjkp1 ´ Gikq “

1q ` PpGjkGikp1 ´ Gijq “ 1q ` PpGikGijp1 ´ Gjkq “ 1q. Intuitively, moments such
as the probability that triplets form intransitive triads and the probability that they
form transitive triads are useful to include if we are interested in, say, identifying θ4

in Example 1
We can estimate averages of probabilities PpGA P gaq over subsets of nodes A Ď

Nn with the same cardinality |A| “ a for connected unlabeled subnetworks ga. By
Theorem 2,

1

nMn

ÿ

AĎNn:
|A|“a

p1tGA P gau ´P pGA P gaqq
p
ÝÑ 0,
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for any ga P GØ
u,a.8 To see this, notice that

1

nMn

ÿ

AĎNn:
|A|“a

1tGA P gau “
1

nMn

ÿ

AĎNn:
|A|“a

ÿ

gAPga

1tGA “ gAu

“
1

anMn

n
ÿ

i“1

ÿ

AĎNn:iRA,
|A|“a´1

ÿ

gAYtiuPga

1tGAYtiu “ gAYtiuu

loooooooooooooooooooooomoooooooooooooooooooooon

ψni

.

In order for ψni to be a valid node statistic, ga must be connected, since this ensures
that ψni only depends on the component of node i. This means, for example, that
if A “ t1, 2, 3u, then ga cannot be isomorphic to the empty subnetwork, or the
subnetwork in which G12 “ 1 and the other potential links are zero, since node 3 is
isolated.

3 Inference

With Theorem 2, we can estimate subnetwork moments. We next describe how to
leverage these moments for inference on θ0. Generally, model (1) admits multiple equi-
librium networks, meaning that GNnpW, θ0q is non-singleton. Aside from Assumption
7(c), theory typically imposes few restrictions on the selection mechanism. Thus, we
seek to derive moment inequalities that enable inference on θ0 without imposing addi-
tional assumptions on the selection mechanism. The inference procedure will require
some additional conditions.

Let Zo
A “

`

pXo
i , X

o
j , ζ

o
ijq; i, j P A

˘

and εA “
`

pXu
i , X

u
j , ζ

u
ijq; i, j P A

˘

.

Assumption 8 (Distribution). For any A Ď Nn, the conditional distribution of
εA |Z

o
A is continuous and known up to a finite-dimensional parameter that does not

depend on A. Without loss of generality, this parameter is a subvector of θ0. Addi-
tionally, for each i, j P A, V n

ij p¨q is continuous in εA.

This assumption is standard in the literature (e.g. Boucher and Mourifié, 2013; Mele,
2013; Sheng, 2014). The next assumption is important for ensuring the computational

8Proposition B.1 shows that in our model we can take the scaling constant Mn to be equal to
one when attributes have exponential tails.
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feasibility of the inference procedure.

Assumption 9 (Endogenous Factors).

(a) There exists ξ P N known to the econometrician such that for all n and i, j P Nn,
the support of Enij has cardinality ξ.

(b) For any n and i, j P Nn, EnijpG,W q “ EnijpG,Zijq, where Zij “ pXi, Xj, ζijq.

Condition (a) is a restriction on network externalities that substantially weakens
Sheng’s (2014) local externalities assumption under a capacity constraint, as we dis-
cuss further below. While (a) may seem strong, in fact it is satisfied by our previous
examples in Section 2. When Enij does not depend on Zij, (a) is often a byproduct of
requiring uniform boundedness (Assumption 2(b)). On the other hand, if the endoge-
nous factors do depend on Zij, then we need to restrict its support. Condition (b)
is imposed for technical reasons, as it ensures that the average of certain simulated
moments constitutes a finite-order U-statistic. Sheng also imposes this requirement.
It is likely feasible to dispense with (b) using the theory of infinite-order U-statistics
(Frees, 1989), but this complicates the analysis in Proposition B.2. We leave this to
future work.

3.1 Moment Inequalities

In this section, we define the moment inequalities used for inference. These inequal-
ities are valid without having to impose the assumptions made in Section 2, which
are used to establish α-mixing, with the exception of Assumption 7(b). This as-
sumption states that the model model (1), which imposes a stability requirement
on the link formation process, rationalizes the data. That is the pair of nodes pi, jq
“best-responds” to the rest of the network G by choosing Gij to maximize the joint
surplus V n

ij pG,W ; θ0q. By leveraging the implications of the stability requirement and
variation in linking frequencies between sets of nodes with different attributes, the
moment inequalities we derive will partially identify θ0.

First we need some notation. Let A Ď Nn, a “ |A|, and da “ |GØ
u,a|. We

normalize ||θ|| ď 1 for all θ P Θ. Recall that, for any g P Gn, g´A ” tgij : i, j P

Nn, not both in Au.
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By Assumption 7(b), for θ “ θ0, there exists a sequence of selection mechanisms
tλNnu such that for all n P N and A Ď Nn,

PpGA “ gA |Z
o
Aq “

ÿ

g´A

Eθ r1 tpgA, g´Aq P GNnpW, θqu

ˆ1 tλNnpW, ν, θq “ pgA, g´Aqu
ˇ

ˇZo
A

‰

(7)

with probability one. We use this to derive a set of moment inequalities that are
valid at the identified set of parameters. We first convert the conditional moment
(7) to a set of unconditional moments using Andrews and Shi (2013) instruments.
Specifically, θ satisfies (7) if and only if it satisfies

Er1tGA “ gAufapZ
o
Aqs “

ÿ

g´A

Eθ r1 tpgA, g´Aq P GNnpW, θqu

ˆ1 tλNnpW, ν, θq “ pgA, g´Aqu fapZ
o
Aqs @fa P Fa, (8)

where Fa is the set of functions of Zo
A (instruments) fa : Radx Ñ t0, 1u such that fa is

symmetric in Zo
A.9 The “only if” direction is clear. The “if” direction follows since Fa

contains the contains the class of “countable hypercube” instruments (see Example 1
of Andrews and Shi (2013)), which implies (7) by Lemmas 2 and 3 of Andrews and
Shi (2013). An example of fa is the indicator for whether or not nodes in A all have
the same first attribute.

We can consistently estimate the average of the left-hand side directly from the
data for all connected, unlabeled subnetworks ga P GØ

u,a. By Theorem 2,

lim
nÑ8

1

nMn

ÿ

AĎNn:
|A|“a

ÿ

gAPga

`

1tGA “ gAufapZ
o
Aq ´ E r1tGA “ gAufapZ

o
Aqs

˘

“ 0.

Consequently, in light of (8), we define the identified set as follows.
9Symmetry is a natural requirement, since these moments involve unlabeled networks. It is also

needed to apply a law of large numbers for U-statistics.
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Definition 4. The identified set is

ΘI “

"

θ P Θ : D tλNnu satisfying Assumption 7 such that

lim
nÑ8

1

nMn

ÿ

AĎNn:
|A|“a

ÿ

gAPga

ˆ

E r1tGA “ gAufapZ
o
Aqs

I

´

ÿ

g´A

Eθ

“

1
 

λNnpW, ν, θq “ pgA, g´Aq
(

fapZ
o
Aq
‰

II

˙

“ 0

for all fa P Fa, ga P GØ
u,a, a ą 1

*

.

The average of component I is our subnetwork moment, which can be estimated
directly from the data, while II is the model moment. Then ΘI is the set of parameters
that match these two moments. This is the analog of the standard definition of
the sharp identified set in a many-markets context (see e.g. Beresteanu et al., 2011;
Galichon and Henry, 2011; Tamer, 2010). The difference is that in the large-market
context, we do not observe the joint distribution PpG “ g |Xoq but instead its observe
analog for subsets of nodes, namely subnetwork moments.

Because ΘI depends on a sequence of unknown functions λNn , it is not immediately
useful for inference. We next provide a more practical characterization of an identified
set that removes the dependence on the nuisance parameters λNn . Arbitrarily label
the elements of GØ

u,a as g1
a, . . . , g

da
a . For gA P GA, define

IapgAq “
`

1tgA P g
1
au, . . . ,1tgA P g

da
a u

˘

.

Note that this can be a vector of zeros. Further, let GApg´A,WA, θq be the set
of subnetworks gA P GA such that for i, j P A, we have gij “ 1 if and only if
Vij ppgA, g´Aq,WA, θq ě 0.10 In other words, this is the set of subnetworks on A that

10Note that Vijp¨q only depends on W through WA by Assumption 9.
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are equilibrium subnetworks under g´A. Let Ua “ tu P Rda : ||u|| ď 1u, and define

m̄n
apθ;u, faq “

1

nMn

ÿ

AĎNn:
|A|“a

ˆ

u1IapGAqfapZ
o
Aq

´ Eθ

„

max
g´A

max
gAPGApg´A,WA,θq

u1IapgAqfapZo
Aq

ˇ

ˇZo
A

˙

for u P Ua. Notice the conditional expectation is taken under θ with respect to WA,
which contains unobservables.

Definition 5. The (computable) identified set is

ΘIC “

"

θ P Θ : lim sup
nÑ8

Eθ rm̄
n
apθ;u, faqs ď 0, @u P Ua, fa P Fa, a P t2, . . . , āu

*

. (9)

We discuss ā below. The term 1
n

ř

AĎNn:
|A|“a

u1E
“

IapGAqfapZ
o
Aq
‰

in E rm̄n
apθ;u, faqs is

a convex combination of the moments 1
n

ř

AĎNn:
|A|“a

ř

gAPga
E r1tGA “ gAufapZ

o
Aqs that

appear in ΘI . The main difference between ΘI and ΘIC lies in the second terms.
Essentially, we take a convex combination of term II in ΘI and replace this with an
upper bound

Eθ

„

max
g´A

max
gAPGApg´A,WA,θq

u1IapgAqfapZo
Aq



that does not depend on this nuisance parameter, converting the moment equality in
ΘI to a moment inequality in ΘIC .

Example 3. Suppose G is a directed network. We illustrate the construction of
maxg´A maxgAPGApg´A,WA,θq u

1IapgAq for |A| “ 2 for the model

VijpG,W ; θq “ Z 1ijθz `Gjiθr ` Tijθt,

where Tij “ 1tD k : Gik“Gkj “ 1u. (Recall Zij “ pXi, Xj, ζijq.) Let gb2 be the equiv-
alence class of linked pairs of nodes with bidirectional linking and gd2 unidirectional
linking (Figure 5). For |A| “ 2, IapGAq “

`

1tGA P g
b
2u,1tGA P g

d
2u
˘

.

30



Inference in Large Network Models

(a) gb2 (b) gd2

Figure 5: Equivalence classes of dyads.

Define the events

B “
 

Z 1ijθz ` θr ` Tijθt ě 0X Z 1jiθz ` θr ` Tjiθt ě 0
(

,

D “
 

Z 1ijθz ` Tijθt ě 0X Z 1jiθz ` Tjiθt ă 0
(

Y
 

Z 1ijθz ` Tijθt ă 0X Z 1jiθz ` Tjiθt ě 0
(

.

To interpret these events, fix g´A (thus fixing Tij and Tji). Then B is the event,
according to the model, that bidirectional linking is an equilibrium on the dyad
consisting of nodes i and j under g´A, while D is the event that unidirectional linking
is an equilibrium under g´A. Let u “ pub, udq, where ub is associated with gb2 and ud

is associated with gd2 . One can show that

max
gAPGApg´A,WA,θq

u1IapgAq “ maxtub, udu1tB XDu ` ub1tB XDcu ` ud1tD X Bcu,

where Bc denotes the complement of the event B. This can be seen by considering
the three cases in which GApg´A,WA, θq contains networks isomorphic to both gb2 and
gd2 , or just one or the other. Consequently,

max
g´A

max
gAPGApg´A,WA,θq

u1IapgAq

“ max
Tij ,TjiPt0,1u

 

maxtub, udu1tB XDu ` ub1tB XDcu ` ud1tD X Bcu
(

,

since the maximum over g´A on the left-hand side corresponds to the maximum over
Tij, Tji on the right-hand side.

We next establish the relationship between the computable identified set and the
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identified set.

Proposition 3.1. Under Assumptions 2, 7(b), and 9(a), ΘIC Ě ΘI .

Hence, ΘIC is conservative. We next argue that (A) conservative inference is the cost
of computational feasibility in our setting and that, nonetheless, (B) the set is sharper
than feasible alternatives in the existing literature. Regarding (A), our computable
identified set is closely related to the characterization of the identified set for games
of complete information due to Beresteanu et al. (2011), who study the case in which
the econometrician observes many markets. The analog of their set in the large-
market case is similar to ΘIC , except we would replace maxg´A maxgAPGApg´A,WA,θq in
the definition of E rm̄n

apθ;u, faqs with maxgPGNn pW,θq
.11 Our set differs for computa-

tional reasons. In general, the conditional expectation in (9) must be computed by
simulation, and computing GNnpW, θq is computationally infeasible, since the number
of equilibrium networks typically grows exponentially with n. In order to avoid this
curse of dimensionality, we settle for computing a more conservative set by taking
the max over a larger set. For a given g´A the maximum over gA P GApg´A,WA, θq

is feasible, at least if |A| is not too large. This is why we restrict a P r2, ās, with
ā chosen according to computational capabilities, keeping in mind the size of Rda .
For example, Sheng (2014) chooses ā “ 5. The maximum over g´A turns out to be
feasible under Assumption 9, since Vijp¨q defines GApg´A,WA, θq, and for fixed W and
θ, the number of possible distinct values of Vijp¨q is no more than ξ. Therefore this
maximum is taken over a finite number of values, which are known. For instance, in
Example 3, the maximum is taken over only four values, namely the possible values
of pTij, Tjiq, where Tij and Tji are binary.

Regarding (B), there are two papers in the existing literature that develop mo-
ment inequalities for inference in the many-networks case, but with Theorem 2, in
theory, these can be used in the large-network setting. Both papers develop conser-
vative bounds, as well. The first set of bounds, developed by Miyauchi (2013), are
computationally infeasible for a large-network setting; because they require comput-
ing equilibrium networks, they suffer from a curse of dimensionality.12 Sheng (2014)

11It is an open question whether or not this replacement yields a set that is equivalent to ΘI in
the large-market case.

12Miyauchi’s approach also requires a strong restriction on preferences (“non-negative externali-
ties”), and the network statistics used to construct his moments must also satisfy a monotonicity
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develops Ciliberto-Tamer-type bounds that are feasible in a large-network setting.13

Our bounds are sharper, since we attain the analog of Sheng’s bounds by restricting all
u P Ua to be the canonical basis vectors multiplied by ˘1 (cf. Beresteanu et al., 2011,
Proposition 3.3). Furthermore, our Assumptions 3 and 9(a) substantially weaken her
local externalities assumption, which restricts Enij to only depend on nodes at most
two links away from i or j. In contrast, our assumptions allow Vijp¨q to depend on
nodes any finite number of links away from i or j.

3.2 Inference Procedure

Next, we discuss the inference procedure for θ0. Let A`i “ A Y tiu. Define the
moment function

mn
i,apθ;u, faq “

ÿ

AĎNn:iRA
|A|“a´1

ˆ

u1IapGA`iqfapZ
o
A`iq

´ Eθ

»

– max
g´pA`iq

max
gA`iP

GA`ipg´pA`iq,θq

u1IapgA`iqfapZo
A`iq

ˇ

ˇ

ˇ

ˇ

Zo
A`i

fi

fl

˛

‚. (10)

where u P Ua. This is the difference between two components. As previously noted,
the first component is a node statistic, so its average over i is consistent for its
expectation by Theorem 2. The second component is a function of Zo

A, so its average
over all subsets of nodes A of size a constitutes a U-statistic of order a. Consistency for
its expectation follows by Proposition B.2 and a standard law of large numbers. This
component typically lacks a closed-form expression. However, it can be simulated,
since the conditional density of εA given Zo

A is known (Assumption 8).
The empirical moments are m̄n

apθ;u, faq “
1

ndaMn

řn
i“1m

n
i,apθ;u, faq for all u P Ũa,

fa P F̃a, and a P t2, . . . , āu, where F̃a is a finite subset of Fa and Ũa is a fi-
nite subset of Ua chosen by the econometrician.14 Then any θ P ΘIC satisfies

condition. We require neither condition.
13To be precise, the bounds defined by her equations (24) and (25) are feasible, but equation

(26) is not. Since we allow for component externalities, the analog of inequality (26) replaces A’s
neighborhood, “BA,” in Sheng’s notation, with the component of A, which we denote by CApGq.
Estimating the moment 1

n

ř

AP ppGA, CApGqq “ pgA, CApgqqq is impractical since most sets of nodes
A will have widely varying components. Thus, her bounds (24) and (25) are the only relevant ones
in a large-market setting.

14Reducing the infinite set of moments to a finite set in such a fashion clearly entails an additional
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lim supnÑ8Erm̄n
apθ;u, faqs ď 0 for any u P Ua. These moment inequalities can be

used to estimate an identified set by computing, for example,

Θ̂IC “

"

θ P Θ : ||m̄n
apθq||

2
` ď

log n

n

*

,

where m̄n
a “

`

m̄n
apθ;u, faq;u P Ũa, fa P F̃a

˘

and ||x||` “ ||maxtx, 0u||E, with || ¨
||E denoting the Euclidean norm (Chernozhukov et al., 2007). Several optimization
algorithms can be used to compute this set. For example, Ciliberto and Tamer (2009)
compute use simulated annealing, while Beresteanu et al. (2011) suggest differential
evolution (Storn and Price, 1997), which we also use in our empirical application. A
number of procedures exist for constructing confidence intervals (e.g. Andrews and
Shi, 2013; Bugni et al., 2014; Chernozhukov et al., 2007; Pakes et al., 2011; Romano
and Shaikh, 2008; Wan, 2013).

Remark 4 (Variance Estimator). In order to construct confidence intervals, we re-
quire a consistent estimate of the variance of m̄n

apθ;u, faq. We use the HAC estimator
due to Jenish (2013). Let K : Rdρ Ñ r´1, 1s be symmetric and continuous at zero
and satisfy Kp0q “ 1, Kpxq “ 0 for x such that |x| ą 1, and

ş

|Kpxq|dx ă 8. Then
the HAC estimator Vna pθ;u, faq is defined as

1

nd2
aMn

n
ÿ

i“1

ÿ

jPNn:
||δij ||ďτn

K

ˆ

||δij||

τn

˙

`

mn
i,apθ;u, faq ´ m̄

n
apθ;u, faq

˘ `

mn
j,apθ;u, faq ´ m̄

n
apθ;u, faq

˘

,

where the bandwidth τn satisfies τ dρn “ Opn1{3q. Proposition B.3 proves the consis-
tency of the estimator.

4 Conclusion

This paper studies inference for models of network formation with externalities when
the econometrician only observes a small number of networks. Inference is a difficult
problem because network externalities can generate dependence among links. We

loss of sharpness. Andrews and Shi (2013) provide an approach that can leverage all instruments in
Fa. Beresteanu et al. (2011) extend Andrews and Shi (2013) to leverage all u P Ua. It is possible
to apply these approaches to our setting, but the cost is that the procedures are computationally
intensive because they require integrating or maximizing over all u and fa.
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demonstrate that interpretable conditions exist under which such dependence is lim-
ited under weak restrictions on externalities. A key assumption is that individuals are
homophilous, which limits the probability that dissimilar nodes are connected. Under
the assumption that unconnected groups of nodes form links independently, this en-
sures that links involving highly dissimilar nodes are less correlated, so networks with
sufficient diversity have enough independent components. These conditions estab-
lish a LLN and CLT for network statistics that can be used to estimate subnetwork
moments.

We use these moments to construct new moment inequalities that can be used for
inference on θ0. These moment inequalities are more informative and computationally
feasible under weaker restrictions on network externalities than feasible alternatives.
The moments are also be useful for estimating games of complete information with
moderately many players. Existing moment inequalities in the literature on empir-
ical games require computing the set of equilibria for every candidate parameter, a
procedure that suffers from a curse of dimensionality in the number players. Our pro-
cedure avoids having to compute equilibria and therefore is feasible when the number
of players is large.

A Appendix: Isolated Nodes

Networks often contain a non-negligible share of isolated nodes, that is, nodes with no
links. For example, in our application, 24 percent of nodes are isolated. Models following
the standard discrete choice setup in which ζij is i.i.d., has full support, and is additively
separable cannot rationalize this stylized fact, since as nÑ8, with probability approaching
one, ζij will be arbitrarily large for some j, and hence, node i will be linked to some node
j. Here we propose a model with a separable error structure that can rationalize isolates on
directed graphs. LetXu

i “ pαi, %iq, where %i is Bernoulli distributed, andX
o “ pXo

i ; i P Nnq.
Consider the model

V n
ij pG,W ; θq “ Ṽ n

ij pG,X
o; θq ` αi ` %iζij .

We might interpret ζij as idiosyncratic meeting shocks between pairs of individuals and %i as
a latent preference for solitude. For simplicity, assume that Ṽ n

ij p¨q is uniformly bounded above
by V̄ . Then node i is isolated if %i “ 0 and αi ă ´V̄ , an event whose probability is uniformly
bounded away from zero. Hence, this error structure ensures that the model is consistent
with the existence of many isolates, while still preserving the common structure of additively
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separable unobservables. The same structure can rationalize isolates on undirected graphs
for models with “non-transferable utility,” where

Gij “ 1
 

Ṽ n
ij pG,X

o; θq ` αi ` %iζij ě 0
(

1
 

Ṽ n
ji pG,X

o; θq ` αj ` %jζji ě 0
(

.

B Appendix: Additional Results

In this section, we consider the case in which G is undirected. The proofs can be easily
extended to the directed case.

B.1 Scaling Constants

The first lemma shows that for Mn “ 1,

1

nMn

n
ÿ

i“1

`

mn
i,apθ;u, faq ´Ermn

i,apθ;u, faqs
˘ p
ÝÑ 0.

Define A`i “ AY tiu.

Proposition B.1. For any ga P GØ
u,a, u P Ua, fa P Fa, and a ą 1, under Assumptions 1,

2, 4, and 5 with τprq “ Ce´ϕr for some C,ϕ ą 0,

sup
n

max
iPNn

ˇ

ˇ

ˇ

ˇ

ÿ

AĎNn:iRA
|A|“a´1

E
“

1 tGA`i P gau fapX
o
A`iq

‰

ˇ

ˇ

ˇ

ˇ

ă 8 and (11)

sup
n

max
iPNn

ˇ

ˇ

ˇ

ˇ

ÿ

AĎNn:iRA
|A|“a´1

Eθ

«

max
g´pA`iq

max
gA`iPGA`ipg´pA`iq,WA`i,θq

u1IapgA`iqfapXo
A`iq

ff

ˇ

ˇ

ˇ

ˇ

ă 8. (12)

Proof. First consider (11) for a “ 3, so GØu,a “ tintransitive triads, transitive triadsu. Since
Fa is uniformly bounded by one and non-negative by assumption, (11) is bounded by

sup
n

max
iPNn

ÿ

AĎNn:iRA
|A|“a´1

E r1 tGA`i P gaus .

Using (1),

E r1 tGA`i “ gA`ius ď E

«

ź

s,tPA

1

"

max
g´pA`iq

p´1q1´gstV n
st

`

pgA`i, g´pA`iqq,WA`i; θ0

˘

ě 0

*

ff

,
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where gst is the st-th component of gA`i. Define for all i, j, k P Nn the events

Iijk “
"

max
g´ti,j,ku

Vij
`

pgIijk, g´ti,j,ku,W ; θ
˘

ě 0,

max
g´ti,j,ku

Vjk
`

pgIijk, g´ti,j,kuq,W ; θ
˘

ě 0, min
g´ti,j,ku

Vik
`

pgIijk, g´ti,j,kuq,W ; θ
˘

ă 0

*

,

Tijk “
"

max
g´ti,j,ku

Vij
`

pgTijk, g´ti,j,kuq,W ; θ
˘

ě 0,

max
g´ti,j,ku

Vjk
`

pgTijk, g´ti,j,kuq,W ; θ
˘

ě 0, min
g´ti,j,ku

Vik
`

pgTijk, g´ti,j,kuq,W ; θ
˘

ě 0

*

,

(13)

where gIijk is the subnetwork on ti, j, ku such that gij “ gjk “ 1 ´ gik “ 1, and gTijk is the
transitive triad on ti, j, ku. Consider the case in which g3 is the class of intransitive triads
(the argument for transitive triads is similar). Then

ÿ

AĎNn:iRA
|A|“a´1

ÿ

gA`iPga

E

«

ź

s,tPA

1

"

max
g´pA`iq

p´1q1´gstV n
st

`

pgA`i, g´pA`iqq,WA`i; θ0

˘

ě 0

*

ff

ď
ÿ

tj,kuĎNn

rP pIijkq `P pIjkiq `P pIkijqs . (14)

To simplify notation, for any i, j, k P Nn, define the events

tiju “ tZij P Cp||δij ||q, Zjk R Cp||δjk||q, Zik R Cp||δik||qu,

tij, jku “ tZij P Cp||δij ||q, Zjk P Cp||δjk||q, Zik R Cp||δik||qu, and

tij, jk, iku “ tZij P Cp||δij ||q, Zjk P Cp||δjk||q, Zik P Cp||δik||qu. (15)

We will only derive the bound for the first term on the right-hand side of (14), as the
argument for the others are similar. By the law of total probability, this term equals

ÿ

tj,kuĎNn

ˆ

P pIijk | ij, jk, ikqPpij, jk, ikq `P pIijk | ijqPpijq

`P pIijk | ikqPpikq ` ¨ ¨ ¨ ` etc.
˙

(16)

We will only bound the first three terms of this sum, as the argument for the others are
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similar. The strategy for the bound is as follows. We can write

P
`

Iijk
ˇ

ˇ ij
˘

“ E

„

1
 

max
g´ti,j,ku

Vij
`

pgIijk, g´ti,j,ku,W ; θ
˘

ě 0
(

ˆ 1
 

max
g´ti,j,ku

Vjk
`

pgIijk, g´ti,j,kuq,W ; θ
˘

ě 0
(

1
 

min
g´ti,j,ku

Vik
`

pgIijk, G´ti,j,kuq,W ; θ
˘

ă 0
( ˇ

ˇ ij



.

When conditioning on only ij, replace the indicators containing Vjk ě 0 and Vik ě 0 with
their upper bounds, namely one, since these indicators involve pairs pj, kq and pi, kq not equal
to pi, jq. Likewise, when conditioning on ij, jk, replace the indicator containing Vik ě 0 with
one. And so on. Replace indicators for Vst ă 0 with one for any s, t P Nn. Replace Ppijq

with its upper bound P
`

Zjk R Cp||δjk||q, Zik R Cp||δik||q
˘

, dropping the events in which
attributes lie in their constraint sets, in this case, tZij P Cp||δij ||qu. Likewise with the other
events. This strategy leads to a useful bound because gA`i is connected.

Using Assumption 2, the sum of the first three terms of (16) is no greater than

ÿ

j

1

#

sup
EPE

sup
zPCp||δij ||q

Vijpδij , E , z; θ0q ě 0

+

ÿ

k

1

#

sup
EPE

sup
zPCp||δjk||q

Vjkpδjk, E , z; θ0q ě 0

+

`
ÿ

j

1

#

sup
EPE

sup
zPCp||δij ||q

Vijpδij , E , z; θ0q ě 0

+

ÿ

k

P
`

Zjk R Cp||δjk||q, Zik R Cp||δik||q
˘

`
ÿ

j

ÿ

k

P
`

Zij R Cp||δij ||q, Zjk R Cp||δjk||q
˘

. (17)

We will show that these terms are uniformly bounded.
Consider the first summand of (17). For all j P Nn, define Sj,t “ tk P Nn : ||δjk|| P

rt, t` 1qu. Then

ÿ

k

1

#

sup
EPE

sup
zPCp||δjk||q

Vjkpδjk, E , z; θ0q ě 0

+

ď

8
ÿ

t“0

|Sj,t|1

#

max
j,kPN

sup
EPE

sup
zPCp||t||q

Vjkpt, E , z; θ0q ě 0

+

. (18)

By Assumption 5 and Lemma A.1 of Jenish and Prucha (2009), |Sj,t| is uniformly Optdρ´1q.
By Assumption 4(b), the indicator function is zero for t sufficiently large. Hence, the right-
hand side converges.

This argument implies that the first term of (17) is uniformly bounded. For the second
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term, notice

ÿ

k

P
`

Zjk R Cp||δjk||q, Zik R Cp||δik||q
˘

ď
ÿ

k

P
`

Zjk R Cp||δjk||q
˘

ď

8
ÿ

t“1

|Sj,t|
`

PpXj R Cxptqq `PpXk R Cxptqq `Ppζjk R Cζptqq
˘

. (19)

By Assumption 4(a), the probabilities are all Opt´5dρ´ϕq. This and the argument for (18)
imply that the second term of (17) is uniformly bounded, as desired.

Lastly the third term of (17) can be bounded using the Cauchy-Schwarz inequality and
arguments for the other terms. (Note that for large values of a, this part of the argument
will need to make use of the fact that attributes have exponential tails, but for any dρ,
exponential tails are unnecessary for a ď 3.) This completes the proof of (11).

Turning to (12), as with (11), we drop fapX
o
A`iq from the expression without loss of

generality, and consider the case a “ 3. For a “ 3, GØ
u,a contains two elements, the

equivalence classes of intransitive and transitive triads. Let u “ pu1, u2q. Then

ˇ

ˇ

ˇ

ˇ

ÿ

AĎNn:iRA
|A|“a´1

Eθ

«

max
g´pA`iq

max
gA`iPGApg´pA`iq,WA`i,θq

u1IapgA`iq

ff

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ÿ

j,k

Eθ

„ˆ

maxtu1, u2u1tIijk X Tijku

` u11tIijk X T cijku ` u21tIcijk X Tijku
˙

ˇ

ˇ

ˇ

ˇ

This is bounded by

ÿ

j,k

Eθ r3 |maxtu1, u2u|1tIijk Y Tijkus

ď 3|maxtu1, u2u|

¨

˝

ÿ

j,k

Eθ r1tIijkus

`
ÿ

j,k

Eθ r1tTijkus

˛

‚. (20)

Both of the sums on the right-hand side are uniformly bounded by arguments for (14).
This completes the proof for a “ 3. The proofs for other values of a can be derived

using the same arguments. The intuition is that the expected degree of a node is uniformly
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bounded in this model (this is implied by the a “ 2 case), so the average number of connected
subnetworks gA`i containing i should be similarly bounded.

B.2 Hoeffding Decomposition

Fix a. As previously noted, the second term of (10), averaged over all subsets of nodes A
of size a, is a U-statistic whose kernel is order a. The next proposition proves the familiar
decomposition of U-statistics into an average of independent terms and an asymptotically
negligible remainder term. This requires a new argument relative to the standard case
because, in light of Proposition B.1, the U-statistic is scaled by 1

n , rather than
`

n
a

˘´1. For
A “ ti1, . . . , iau, and fixed u P Ua and θ P Θ, define the kernel

JApXi1 , . . . , Xiaq “ JApZ
o
Aq “ Eθ

„

max
g´A

max
gAPGApg´A,WA,θq

u1IapgAqfapZoAq
ˇ

ˇZoA



.

Let Un “
ř

AĎNn,
|A|“a

JApZ
o
Aq, and define its projection

Sn “
n
ÿ

i“1

`

EθrUn |X
o
i s ´EθrUns

˘

`EθrUns

“
1

a

n
ÿ

i“1

ÿ

AĎNn:iRA
|A|“a´1

ˆ

aEθ

„

max
g´pA`iq

max
gA`iPGA`ipg´pA`iq,WA`i,θq

u1IapgA`iqfapXo
A`iq

ˇ

ˇ

ˇ

ˇ

Xo
i



´ pa´ 1qEθ

«

max
g´pA`iq

max
gA`iPGA`ipg´pA`iq,WA`i,θq

u1IapgA`iqfapXo
A`iq s

¸

.

Proposition B.2. Under the assumptions of Proposition B.1, 1
nUn “

1
nSn ` oppn

´1{2q.

Proof. It suffices to show that 1?
n
pSn´Unq

L2
ÝÑ 0. Below, we prove that Var

´

1?
n
Un

¯

ă 8,
Supposing for now that this is true, by Hájek’s projection lemma (Hájek, 1968),

E

ˆ

1
?
n
Sn ´

1
?
n
Un

˙2

“
1

n
pVarpSnq ´VarpUnqq

“
1

n
VarpUnq

ˆ

VarpSnq
VarpUnq

´ 1

˙

.

Since the collection of kernels tJAuAĎNn is uniformly bounded, by the arguments in Theorem
1, section 3.7.2 of Lee (1990),

`

n
a

˘´2VarpSnq{
`

n
a

˘´2VarpUnq Ñ 1. Thus, it remains to show
that VarpUnq “ Opnq, or equivalently, Var

´

1?
n
Un

¯

ă 8
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As in Proposition B.1, we will only consider the case in which the kernel has order a “ 3.
Similar arguments apply for kernels of other orders. Notice

VarpUnq “
a
ÿ

c“1

ÿ

|AXB|“c

Cov pJApZoAq, JBpXBqq .

Then it suffices to show that for any c ě 1,
ř

|AXB|“cCov pJApZ
o
Aq, JBpZ

o
Bqq “ Opnq. The

strategy is the same as the proof of Proposition B.1. First we examine the case of c “ 1.
For ease of notation, define Jijk “ Jti,j,kupX

o
ti,j,kuq. Then adopting the notation in equation

(16) of Proposition B.1, by the law of total probability,

ÿ

|AXB|“1

Cov pJApZoAq, JBpXBqq “
1

3!2!

n
ÿ

i“1

ÿ

j‰k‰i

ÿ

l‰m‰i

`

ErJijkJilms ´ErJijksErJilms
˘

“
1

12

n
ÿ

i“1

ÿ

j‰k‰i

ÿ

l‰m‰i

`

ErJijkJilm | ilsPpilq `ErJijkJilm | ij, ilsPpij, ilq

`ErJijkJilm | ik, ilsPpik, ilq `ErJijkJilm | ij, ik, ilsPpij, ik, ilq ` ¨ ¨ ¨ ` etc.
˘

`
1

12

n
ÿ

i“1

ÿ

j‰k‰i

ÿ

l‰m‰i

`

ErJijk | ijsPpijq `ErJijk | ij, iksPpij, ikq ` ¨ ¨ ¨ ` etc.
˘

ˆ
`

ErJilm | ilsPpilq `ErJilm | il, imsPpil, imq ` ¨ ¨ ¨ ` etc.
˘

.

The summation spanning the last two lines is Opnq by the arguments for (16). To show that
the summation immediately preceding it is also Opnq, we consider as an example the term

n
ÿ

i“1

ÿ

j‰k‰i

ÿ

l‰m‰i

ErJijkJilm | ik, ilsPpik, ilq.

(The argument for the other terms follow similarly.) The ith summand of the outer sum is
bounded in absolute value by

ÿ

j‰k‰i

ÿ

l‰m‰i

E
”

Eθ

”

1tIijkpg´ti,j,kuqu ` 1tTijkpg´ti,j,kuqu
ˇ

ˇXo
ti,j,ku

ı

ˆEθ

”

1tIilmpg´ti,j,kuqu ` 1tTilmpg´ti,j,kuqu
ˇ

ˇXo
ti,l,mu

ı

ˇ

ˇ

ˇ

ˇ

ik, kl



ˆ 9 maxtu1, u2u
2 Ppik, ilq,

using the argument in (20). Using the strategy for bounding (16), we can bound this by
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9 maxtu1, u2u
2 times

ÿ

j‰k

2 ¨ 1

#

sup
EPE

sup
zPCp||δik||q

Vikpδik, E , z; θ0q ě 0

+

P pζik R Cζp||δik||q, ζjk R Cζp||δjk||qq

ˆ
ÿ

l‰m

2 ¨ 1

#

sup
EPE

sup
zPCp||δil||q

Vilpδil, E , z; θ0q ě 0

+

P pζil R Cζp||δil||q, ζlm R Cζp||δlm||qq

This is uniformly bounded by arguments for (16).
Next, we consider the case c “ 2:

ÿ

|AXB|“2

Cov pJApZoAq, JBpXBqq “
1

3!

n
ÿ

i“1

ÿ

j‰k‰i

ÿ

l‰i,j

`

ErJijkJilms ´ErJijksErJilms
˘

“
1

6

n
ÿ

i“1

ÿ

j‰k‰i

ÿ

l‰i,j

`

ErJijkJijl | ilsPpilq `ErJijkJilm | ij, ilsPpij, ilq

`ErJijkJijl | ik, ilsPpik, ilq `ErJijkJijl | ij, ik, ilsPpij, ik, ilq ` ¨ ¨ ¨ ` etc.
˘

`
1

6

n
ÿ

i“1

ÿ

j‰k‰i

ÿ

l‰i,j

`

ErJijk | ijsPpijq `ErJijk | ij, iksPpij, ikq ` ¨ ¨ ¨ ` etc.
˘

ˆ
`

ErJijl | ijsPpijq `ErJijl | ij, ilsPpij, ilq ` ¨ ¨ ¨ ` etc.
˘

.

The summation spanning the last two lines is Opnq by the arguments for (16). To show
that the summation immediately preceding it is also Opnq, we consider as an example the
term

n
ÿ

i“1

ÿ

j‰k‰i

ÿ

l‰i,j

ErJijkJijl | jk, iksPpjk, ikq.

(The argument for the other terms follow similarly.) Following the same line of reasoning
as the c “ 1 case, the ith summand of the outer sum is bounded in absolute value by

9 maxtu1, u2u
2
ÿ

i

ÿ

j‰k

1

#

sup
EPE

sup
zPCp||δjk||q

Vjkpδjk, E , z; θq ě 0

+

ÿ

l

Ppζij R Cζp||δij ||q, ζil R Cζp||δil||q.

This is uniformly Opnq by arguments for (17). The case c “ 3 can be shown with similar
arguments.
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B.3 Variance Estimator

Proposition B.3. Under the assumptions of Lemma B.1, for any a P N, u P Ua, fa P Fa,
and θ P Θ,

Vna pθ;u, faq ´ Var
`?
nm̄n

apθ;u, faq
˘ p
ÝÑ 0.

Proof. Define

wni,apθ;u, faq “
ÿ

AĎNn:iRA
|A|“a´1

ˆ

u1IapGA`iqfapXA`iq
o

´ aEθ

«

max
g´pA`iq

max
gA`iPGA`ipg´pA`iq,WA`i,θq

u1IapgA`iqfapXo
A`iq

ˇ

ˇ

ˇ

ˇ

Xo
i

ff

` pa´ 1qEθ

«

max
g´pA`iq

max
gA`iPGA`ipg´pA`iq,WA`i,θq

u1IapgA`iqfapXo
A`iq

ff

˙

and w̄na pθ;u, faq “
1
an

řn
i“1w

n
i,apθ;u, faq. By Proposition B.2,

?
nm̄n

apθ;u, faq “
?
nw̄na pθ;u, faq ` opp1q.

Define Wn
a pθ;u, faq as

1

a2n

n
ÿ

i“1

ÿ

jPNn:
||δij ||ďτn

K

ˆ

||δij ||

τn

˙

`

wni,apθ;u, faq ´ w̄
n
a pθ;u, faq

˘ `

wnj,apθ;u, faq ´ w̄
n
a pθ;u, faq

˘

,

By Jenish (2013) Theorem 4,Wn
a pθ;u, faq´Var

`?
nw̄na pθ;u, faq

˘ p
ÝÑ 0. Since

?
nw̄na pθ;u, faq´

?
nm̄n

apθ;u, faq
L2
ÝÑ 0, as shown in the proof of Proposition B.2, it follows from the (re-

verse) triangle inequality that Var
`?
nw̄na pθ;u, faq

˘

´ Var
`?
nm̄n

apθ;u, faq
˘

Ñ 0. Therefore,
Wn
a pθ;u, faq is consistent for the variance of

?
nm̄n

apθ;u, faq. This estimator is not feasible,
since it contains an integral over the distribution of elements of X, which is not known.
Thus, we aim to show that Wn

a pθ;u, faq ´ Vna pθ;u, faq
p
ÝÑ 0, which will establish the proof.

To simplify notation, we fix a and make several definitions:

• wi “ wni,apθ;u, faq, w̄ “
1
an

řn
i“1wi,

• mi “ mn
i,apθ;u, faq, m̄ “ 1

an

řn
i“1mi,

• Kij “ K
´

||δij ||
τn

¯

,

• Di “
ř

AĎNn:iRA
|A|“a´1

u1IapGA`iqfapXo
A`iq,
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• Hi “ ´
ř

AĎNn:iRA
|A|“a´1

ˆ

a
”

maxg´pA`iq maxgA`iPGA`ipg´pA`iq,WA`i,θq u
1IapgA`iqfapXo

A`iq
ˇ

ˇXo
i

ı

´pa´ 1qEθ

”

maxg´pA`iq maxgA`iPGA`ipg´pA`iq,WA`i,θq u
1IapgA`iqfapXo

A`iq

ı

˙

, and

• Ui “ ´
ř

AĎNn:iRA
|A|“a´1

ˆ

Eθ

”

maxg´pA`iq maxgA`iPGA`ipg´pA`iq,WA`i,θq u
1IapgA`iqfapXo

A`iq
ˇ

ˇXo
A`i

ı

˙

.

So wi “ Di `Hi, and mi “ Di ` Ui, and

Wn
a pua, fa, θq ´ Vna pua, fa, θq “

1

a2n

ÿ

Kijpwiwj ´mimjq

A

`
1

a2n

ÿ

Kijpmim̄´ wiw̄q

B

`
1

a2n

ÿ

Kijpmjm̄´ wjw̄q

C

`
1

a2n

ÿ

Kijpw̄
2 ´ m̄2q

D

,

where the sum is over all i and j such that ||δij || ď τn. We show that each of these
components is opp1q. First,

B “
1

a2n

ÿ

i

ÿ

j:||δij ||ďτn

Kij

`

mim̄´ wipm̄` w̄ ´ m̄q
˘

“
1

a2n

ÿ

i

pmi ´ wiq
ÿ

j:||δij ||ďτn

Kijm̄´
1

a2n

ÿ

wi
ÿ

j:||δij ||ďτn

Kijpw̄ ´ m̄q.

Since Kij is bounded above by one, and τ
dρ
n “ Opn1{3q by construction, by Lemma A.1

of Jenish and Prucha (2009),
ř

j:||δij ||ďτn
Kij “ Opn1{3q. By Proposition B.2, w̄ ´ m̄ “

1
n

ř

ipmi ´ wiq “ oppn
´1{2q. Hence, B “ opp1q. The argument for C is similar. Next,

D “
1

a2n

ÿ

i

ÿ

j:||δij ||ďτn

Kij

`

pm̄` w̄ ´ m̄q2 ´ m̄2
˘

“
2

a2n

ÿ

i

ÿ

j:||δij ||ďτn

Kijm̄pw̄ ´ m̄q `
1

a2n

ÿ

i

ÿ

j:||δij ||ďτn

Kijpw̄ ´ m̄q
2.

The terms in the last line are opp1q by the argument for B. Finally,

A “
1

a2n

ÿ

Kij

`

pDi `HiqpDj `Hjq ´ pDi ` UiqpDj ` Ujq
˘

“
1

a2n

ÿ

KijDipHj ´ Ujq

A1

`
1

a2n

ÿ

KijDjpHi ´ Uiq

A2

`
1

a2n

ÿ

KijpHiHj ´ UiUjq

A3

.

Term A2 “
1
a2n

ř

ipHi ´ Uiq
ř

j:||δij ||ďτn
KijDj “ opp1q by arguments for B, noting that Dj
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is uniformly bounded above by Proposition B.1. Next,

A3 “
1

a2n

ÿ

Kij

`

HiHj ´ pHi ` Ui ´HiqpHj ` Uj ´Hjq
˘

“ ´
1

a2n

ÿ

i

Hi

ÿ

j:||δij ||ďτn

KijpUj ´Hjq

B1

´
1

a2n

ÿ

i

pUi ´Hiq
ÿ

j:||δij ||ďτn

KijHj

B2

´
1

a2n

ÿ

i

pUi ´Hiq
ÿ

j:||δij ||ďτn

KijpUj ´Hjq

B3

.

Terms B2 and B3 are opp1q by arguments for B, noting that Uj andHj are uniformly bounded
above. Notice

B1 “ ´
1

a2n

ÿ

j

pUj ´Hjq
ÿ

i

KijHi1t||δij || ď τnu.

By arguments for B, first average is oppn´1{2q (Proposition B.2), while the last sum is
Oppn

1{3q. Hence, A2 and A3 are opp1q. Similar arguments demonstrate that A1 “ opp1q,
noting that Di is uniformly bounded above. This completes the proof.

B.4 Verifying Regularity Conditions

We verify Assumptions A.1-A.4 of Bugni et al. (2014). Define the empirical process

vna pθ;u, faq “ σna pθ;u, faq
´1 1
?
n

n
ÿ

i“1

`

mn
i,apθ;u, faq ´E

“

mn
i,apθ;u, faq

‰˘

,

where σna pθ;u, faq2 “ Var p
?
nm̄n

apθ;u, faqq. Further, define the correlation matrix

Ωn
a,a1pθ, θ

1;u, u1, fa, fa1q “

E

„ˆ

m̄n
apθ;u, faq ´Erm̄n

apθ;u, faqs

σna pθ;u, faq

˙ˆ

m̄n
apu

1, f 1a1 , θ
1q ´Erm̄n

a1pθ
1;u1, fa1qs

σna1pθ
1;u1, fa1q

˙

.

Let P be the set of distributions of the primitives W, ν such that ΘIC is nonempty. For
F P P, let P˚F denote outer probability and dF pθ, θ

1q the coordinate-wise intrinsic vari-
ance semimetric (equation (A-1) of Bugni et al., 2014). Implicitly, the expectations and
probabilities in this section are indexed by F .

We maintain the following assumptions.
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Assumption 10. lim infnÑ8 λmin
`

σna pu, fa, θq
2
˘

ą 0, where λmin is the smallest eigenvalue.

Assumption 11 (Regularity). Let φA,θp¨ |ZoAq be the conditional density of εA |ZoA. For
any i, j P N and A Ď Nn, Vij and φA,θp¨ |ZoAq are differentiable in θ.

The next assumption can likely be relaxed, but this requires a central limit theorem for
U -processes with observation-indexed kernel functions. To the best of our knowledge, no
such result currently exists, although there has been work establishing central limit theorems
for U -statistics with observation-indexed kernels (e.g. de Jong, 1987).

Assumption 12 (Anonymity). Maintaining Assumptions 2 and 9, for any i, j P Nn, there
exist functions V and En such that

Vijpδij , EnijpG,Zijq, Zij ; θq “ V pδij , EnpGi, Gj , G´i,´j , Zijq, Zij ; θq,

where G´i,´j is the subnetwork G with all links involving nodes i and j removed.

In other words, Vij does not depend directly on the labels i and j. This assumption rules
out the possibility that different nodes can have different utility functions, interpreted as
different “roles” in the network-formation process. This is satisfied by all of the examples in
this paper.

Lemma B.1. Under Assumptions 2, 9, 10, 11, and 12,

Eθ

„

max
g´A

max
gAPGA`ipg´A,WA,θq

u1IapgAqfapZoAq
ˇ

ˇ

ˇ

ˇ

ZoA



(21)

is differentiable in θ for any A Ď Nn.

Proof. We suppress fapZoAq for ease of notation. We show the claim for the case a “ 3;
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the proof is similar for other values. Let A “ ti, j, ku, and define

Iijkpg´Aq “
"

Vij
`

pgIijk, g´ti,j,ku,W ; θ
˘

ě 0,

Vjk
`

pgIijk, g´ti,j,kuq,W ; θ
˘

ě 0, Vik
`

pgIijk, g´ti,j,kuq,W ; θ
˘

ă 0

*

,

Tijkpg´Aq “
"

Vij
`

pgTijk, g´ti,j,kuq,W ; θ
˘

ě 0,

Vjk
`

pgTijk, g´ti,j,kuq,W ; θ
˘

ě 0, Vik
`

pgTijk, g´ti,j,kuq,W ; θ
˘

ě 0

*

.

Since a “ 3, vectors in Ua are two dimensional, and we label each such u as pu1, u2q.
Expression (21) can be written as

Eθ

„

max
g´A

ˆ

maxtu1, u2u1 tIijkpg´Aq X Tijkpg´Aqu

`u11 tIijkpg´Aq X Tijkpg´Aqcu ` u21 tIijkpg´Aqc X Tijkpg´Aqu
˙ ˇ

ˇ

ˇ

ˇ

ZoA



.

To reduce notation in the next expression, we will define I “ Iijkpg´Aq and T “ Tijkpg´Aq.
Then the previous equation equals the conditional expectation under θ of

1 tD g´A : I X T u1 tD g´A : I X T cu1 tD g´A : I X T cumaxtu1, u2u`

1 tD g´A : I X T u1 tE g´A : I X T cu1 tD g´A : I X T cumaxtu1, u2u`

1 tD g´A : I X T u1 tD g´A : I X T cu1 tE g´A : I X T cumaxtu1, u2u`

1 tD g´A : I X T u1 tE g´A : I X T cu1 tE g´A : I X T cumaxtu1, u2u`

1 tE g´A : I X T u1 tD g´A : I X T cu1 tD g´A : I X T cumaxtu1, u2u`

1 tE g´A : I X T u1 tD g´A : I X T cu1 tE g´A : I X T cuu1`

1 tE g´A : I X T u1 tE g´A : I X T cu1 tD g´A : I X T cuu2.

Consider the expectation of the first element of the sum in the previous expression (the
argument for the other elements is the same):

Eθ
“

1 tD g´A : I X T u1 tD g´A : I X T cu1 tD g´A : I X T cumaxtu1, u2u
ˇ

ˇZoA
‰

“ maxtu1, u2u

ż

εA:L
φA,θpεA |Z

o
Aq dεA,
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where the event L equals

tD g´A : I X T u X tD g´A : I X T cu X tD g´A : I X T cu .

By the Leibniz integral rule, the integral is differentiable in θ since the limits of integration
and the density are differentiable under Assumption 11. This completes the proof of (a).

Assumption 13. supn supθ,θ1 supFPP ∇θ,θ1 ||Ωn
a,a1pθ, θ

1;u, u1, fa, fa1q|| ă 8. (This derivative
is well defined by Lemma B.1.)

Lemma B.2. Maintain the assumptions of Lemma B.1. Under Assumption 13, for any
a, a1 ą 1, u P Ua, u1 P Ua1, fa P F̃a, and f 1a1 P F̃a1 ,

lim
δÓ0

sup
||pθ1,θ11q´pθ2,θ

1
2q||ăδ

sup
FPP

||Ωn
a,a1pθ1, θ

1
1;u, u1, fa, fa1q ´ Ωn

a,a1pθ2, θ
1
2;u, u1, fa, fa1q|| “ 0.

Proof. This follows from a first-order Taylor expansion of the correlation matrix.

Proposition B.4 (Stochastic Equicontinuity). Under Assumptions 2, 9, 10, 11, and 12,

lim
δÓ0

lim sup
nÑ8

sup
FPP

P˚F

˜

sup
dF pθ,θ1qăδ

||vnpθq ´ vnpθ
1q|| ą ε

¸

“ 0.

Proof. Recall the definitions of Di and Ui from the proof of Proposition B.3. To emphasize
its dependence on θ, we write Uipθq ” Ui. Definemn

i,a ” mn
i,apθ;u, faq, σ

n
a pθq ” σna pθ;u, faq “

Var p
?
nm̄n

apθ;u, faqq, and vnpθq ” vnpθ;u, faq “ σna pθq
´1 1?

n

řn
i“1

´

mn
i,apθq ´Ermn

i,apθqs
¯

.
Notice

vnpθq ´ vnpθ
1q “ σna pθq

´1
`

σna pθqvnpθq ´ σ
n
a pθ

1qvnpθ
1q
˘

`
`

σna pθqσ
n
a pθ

1q´1 ´ 1
˘

˜

1
?
n

ÿ

i

pDi ´ErDisq

¸

`
`

σna pθqσ
n
a pθ

1q´1 ´ 1
˘

˜

1
?
n

ÿ

i

`

Uipθ
1q ´ErUipθ

1qs
˘

¸

.
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Hence,

P˚F

˜

sup
dF pθ,θ1qăδ

||vnpθq ´ vnpθ
1q|| ą ε

¸

ď P˚F

˜

sup
dF pθ,θ1qăδ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

σna pθq
´1

`

σna pθqvnpθq ´ σ
n
a pθ

1qvnpθ
1q
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

3

¸

`P˚F

˜

sup
dF pθ,θ1qăδ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

σna pθqσ
n
a pθ

1q´1 ´ 1
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n´1Var

˜

ÿ

i

Di

¸

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nVar

˜

ÿ

i

Di

¸´1
1
?
n

ÿ

i

pDi ´ErDisq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

3

˛

‚

`P˚F

˜

sup
dF pθ,θ1qăδ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

σna pθqσ
n
a pθ

1q´1 ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sup
dF pθ,θ1qăδ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
n

ÿ

i

`

Uipθ
1q ´ErUipθ

1qs
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

3

¸

.

Label the three terms on the right-hand side A, B, and C. Term A is bounded above by

P˚F

˜

sup
dF pθ,θ1qăδ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C

˜

1
?
n

ÿ

i

pUipθq ´ErUipθqsq ´
1
?
n

ÿ

i

`

Uipθ
1q ´ErUipθ

1qs
˘

¸

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

3

¸

for some constant C by Assumption 10. This converges to zero if we establish stochastic
equicontinuity of the empirical process 1?

n

ř

i pUipθ
1q ´ErUipθ

1qsq, which is proven below.
Term B is the product of three elements. First notice that by a uniform-in-distribution

central limit theorem for random fields,15 nVar p
ř

iDiq
´1 1?

n

ř

ipDi ´ ErDisq “ Opp1q uni-
formly in F . Second, the moments are uniformly bounded by Assumptions 2 and 9(a),
a property inherited by the element nVar p

ř

iDiq
´1. Third, Lemma B.2 implies that

σna pθqσ
n
a pθ

1q´1 ´ 1 uniformly converges to zero as δ Ñ 0. Then by Slutsky’s theorem,
limδÓ0 lim supnÑ8 supFPP B “ 0.

To show that C converges to zero, since σna pθqσna pθ1q´1 ´ 1 uniformly converges to zero,
as argued previously, by the continuous mapping theorem (van der Vaart and Wellner, 1996,
Theorem 1.11.1) it is enough to show that the empirical process 1?

n

ř

i pUipθ
1q ´EF rUipθ

1qsq

weakly converges to a Gaussian process. Note that establishing this result also implies
stochastic equicontinuity, which then implies that A converges to zero, completing the proof.
Under Assumption 12, it is enough to verify the conditions of Theorem 4.9 of Arcones and
Giné (1993).16 Condition (ii) is satisfied, since the moments are uniformly bounded. To

15Jenish and Prucha (2009) provide a non-uniform central limit theorem for random fields, while
van der Vaart and Wellner (1996) (Proposition A.5.2) provides a uniform central limit theorem for
i.i.d. data.

16This result is not uniform in the distribution, but the extension to this case should be straight-
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establish condition (iii), by Theorem 2.6.7 of van der Vaart and Wellner (1996), it suffices
to show that the class of functions tmn

apθq; θ P Θu is VC-subgraph. This follows from
Assumption 13 and Lemma 2.13 of Pakes and Pollard (1989),17 which thus establishes
Theorem 4.9, and hence, stochastic equicontinuity. By Theorem 2.8.2 of van der Vaart and
Wellner (1996), this in turn implies pre-Gaussianity, verifying condition (i) of Theorem 4.9.

Proposition B.5. Under Assumptions 2, 9, 10, 11, Assumptions A.1-A.4 of Bugni et al.
(2014) hold.

Proof. Assumption A.1 is maintained. Proposition B.4 verifies Assumption A.2. Assump-
tion A.3 follows because the moments are uniformly bounded by Proposition B.1. Lemma
B.2 implies Assumption A.4.

C Appendix: Proofs of Main Results

For all n P N, i, j P Nn, we abuse notation and define Γij as the smallest set satisfying
Assumption 6(a). For A,A1 Ď Nn, let ΓpA,A1q “ YkPAXlPA1 Γkl. We will view ΓpA,A1q

both as a set of positions and the set of nodes associated with these positions. Viewed as a
set of nodes, let ΓpA,A1qc “ NnzΓpA,A1q.

For two sets of nodes A,A1 Ď Nn, let tA Ø A1u “ tD pi, jq P A ˆ A1 : Gij “ 1u. Let
tAÜ A1u be the complement of this event. Additionally, define the event

CcA,A1 “
 

Zij P Cp||δij ||q @pi, jq P ΓpA,A1q ˆ ΓpA,A1qc
(

.18 (22)

This says that realizations of Zij lies within their constraint sets Cp¨q, defined in Assumption

forward (cf. van der Vaart and Wellner, 1996, Theorem 2.8.3). Additionally, the theorem only applies
to identically distributed random variables, whereas in our case, tXiu is non-identically distributed,
since it depends on fixed positions ρi. We are not aware of weak convergence results in this case.
(However, see Giné et al. (2000) and Peña and Giné (1999), Chapter 3, for some developments in
this area.)

17In the notation of Pakes and Pollard (1989), take

ϕ “ sup
θ

ˇ

ˇ

ˇ

ˇ

∇θE
„

max
g´A

max
gAPGApg´A,WA,θq

u1IapgAqfapZoAq
ˇ

ˇZoA


ˇ

ˇ

ˇ

ˇ

.

18Note that Cp||δij ||q X Cp||δik||q ‰ H, since Cprq is nondecreasing and nonempty by assumption.
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4, for all indicated pairs. The next lemma states that with probability one, nodes in ΓpA,A1q

are unconnected to nodes in its complement under the event CcA,A1 , provided A and A1 are
sufficiently distant.

Lemma C.1. Under Assumptions 2, 4, and 6, for r sufficiently large,

sup
 

P
`

ΓpA,A1q Ø ΓpA,A1qc |CcA,A1
˘

;A,A1 Ď Nn, dpA,A1q ě r, n P N
(

“ 0. (23)

Proof. All probability statements in this proof will be conditional on the event CcA,A1 .
Since dpA,A1q ě r, Assumption 6 implies that d

`

ΓpA,A1q,ΓpA,A1qc
˘

ě γprq. Suppose, to
obtain a contradiction, that for some n P N and A,A1 Ď Nn, with positive probability,
ΓpA,A1q Ø ΓpA,A1qc. Notice

PpΓpA,A1q Ø ΓpA,A1qcq ď max
iPΓpA,A1q,
jPΓpA,A1qc

PpVijpδij , Enij , Zij ; θ0q ě 0q.19

Conditional on CcA,A1 , Zij P Cp||δij ||q, so it follows that the right-hand side of the above
expression is bounded above by

max
iPΓpA,A1q,
jPΓpA,A1qc

sup
EPE

sup
zPCp||δij ||q

1tVijpδij , E , z; θ0q ě 0u.

But for r sufficiently large, by Assumption 6, γprq, and therefore ||δij ||, is large. Hence, by
Assumption 4(b), Vijpδij , E , z; θ0q is strictly less than zero for all E P E and z P Cp||δij ||q,
which establishes the contradiction.

We next derive an asymptotic bound on the probability that the complement of CcA,A1 ,
denoted CA,A1 , is true.

Lemma C.2. Under Assumptions 4, 5, and 6, there exists κ ą 0 such that

suptPpCA,A1q;A,A
1 Ď Nn, dpA,A1q ě r, n P Nu “ O

´

mint|A|, |A1|ur´3dρ´κ
¯

.

Proof. Let A,A1 Ď Nn and dpA,A1q ě r. By the union bound,

PpCA,A1q ď |A|max
kPA

P
`

D i P XlPA1Γkl, j P ΓpA,A1qc : Zij R Cp||δij ||q
˘

. (24)

Fix k P A, and let minlPA1 ||δkl|| “ r̃. Then Assumption 6 implies that, for any i P XlPA1Γkl,

19For simplicity, we are assuming that the network is undirected.
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mint||δij ||; j P ΓpA,A1qcu ě γpr̃q. This motivates us to define for each i P XlPA1Γkl a
partition of ΓpA,A1qc consisting of sets tSi,r̃,tu8t“0 such that for each t, Si,r̃,t “ tj P Nn :

||δij || P pγpr̃q ` t, γpr̃q ` t` 1su X ΓpA,A1qc. Since C is nondecreasing (Assumption 4),

P

ˆ

D i P XlPA1Γkl, j PΓpA,A
1qc : Zij R Cp||δij ||q

˙

ď P

˜

8
ď

t“0

 

D i P XlPA1Γkl, j P Si,r̃,t : Zij R Cpγpr̃q ` tq
(

¸

ď

8
ÿ

t“0

| XlPA1 Γkl| max
iPXlPA1Γkl
jPSi,r̃,t

|Si,r̃,t|P pZij R Cpγpr̃q ` tqq . (25)

By Assumption 6(a), XlPA1Γkl Ď XlPA1Bnk p||δkl||q, which has cardinality Opr̃dρq by the
construction of k, Assumption 5, and Lemma A.1 of Jenish and Prucha (2009). This lemma
also implies that supt|Si,r̃,t|; i P XlPA1Γklu “ Oppγpr̃q`tqdρ´1q. Furthermore, by Assumption
4(a), P pZij R Cpγpr̃q ` tqq is uniformly Opτpγpr̃q`tqq. Combining these facts, the summands
of (25) are of asymptotic order

r̃dρpγpr̃q ` tqdρ´1τpγpr̃q ` tq ď r̃dρpγpr̃q ` tqdρ`βτpγpr̃q ` tqt´1´β, (26)

for arbitrary β P p0, ϕq (ϕ defined in Assumption 4(a)) and r sufficiently large, using the
fact that γpr̃q is diverging with r̃. Notice that for t sufficiently large, by Assumption 4(a),
there exists K ą 0 such that

pγpr̃q ` tqdρ`βτpγpr̃q ` tq “ pγpr̃q ` tq´4dρ´ϕ`β τpγpr̃q ` tqpγpr̃q ` tq5dρ`ϕ
loooooooooooooooomoooooooooooooooon

Ñcą0

ď Kγpr̃q´4dρ´ϕ`βτpγpr̃qqγpr̃q5dρ`ϕ

“ Kγpr̃qdρ`βτpγpr̃qq

ď Kµr̃´4dρ´ϕγpr̃qβ (Assumption 6(b))

ă Kµr̃´4dρ´pϕ´βq. pγpr̃q ă r̃q

Since
ř8
t“0 t

´1´β converges, (26) and the above argument imply that (25) “ Opr̃´3dρ´κq for
κ “ ϕ´ β. Since dpA,A1q ě r implies r̃ ě r, and ϕ ą β, the claim follows from (24).

The next lemma shows that, for any n, pψni ; i P Aq KK pψnj ; j P A1q conditional on CcA,A1 .
For A Ď Nn, define ψnA “ pψni ; i P Aq.
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Lemma C.3. Under Assumptions 1, 3, and 7, for any H P σpψnAq and H
1 P σpψnA1q and r

sufficiently large,

sup
 
ˇ

ˇPpψnA P H X ψ
n
A1 P H

1 |CcA,A1q ´PpψnA P H |C
c
A,A1qPpψ

n
A1 P H

1 |CcA,A1q
ˇ

ˇ;

A,A1 Ď Nn, dpA,A1q ě r, n P N
(

“ 0. (27)

Proof. Fix A,A1 Ď Nn, dpA,A1q ě r, and n P N. Define

λΓpA,A1q “
`

λSpWS , νS ; θ0q;S P SpW, θ0q, S Ď ΓpA,A1q
˘

,

νΓpA,A1q “
`

νS ;S P SpW, θ0q, S Ď ΓpA,A1q
˘

.

In other words, νΓpA,A1q is the vector of public signals νS associated with each isolated society
S Ď ΓpA,A1q, while λΓpA,A1q is the vector of subnetwork selection mechanisms for each of
these isolated societies. Similarly define λΓpA,A1qc and νΓpA,A1qc .

Since A Ď ΓpA,A1q, A1 Ď ΓpA,A1qc, and (23) holds by Lemma C.1, CipGq Ď ΓpA,A1q

and CjpGq Ď ΓpA,A1qc for all i P A and j P A1 with probability one conditional on CcA,A1 .
Then conditional on CcA,A1 , by the definition of node statistics, the event tψnA P HXψ

n
A1 P H

1u

is equivalent to the event

 

GΓpA,A1q P GXG´ΓpA,A1q P G
1 XWΓpA,A1q PW XWΓpA,A1qc PW

1
(

(28)

for some G P σpGΓpA,A1qq, G1 P σpG´ΓpA,A1qq, W P σpWΓpA,A1qq, and W1 P σpWΓpA,A1qcq. Thus,

PpψnA P H X ψ
n
A1 P H

1 |CcA,A1q “ E
“

P
`

GΓpA,A1q P GXG´ΓpA,A1q P G
1

XWΓpA,A1q PW XWΓpA,A1qc PW
1 |W PW,CcA,A1

˘ ˇ

ˇCcA,A1
‰

. (29)

Henceforth, purely for ease of notation, we will only consider the case in which node statistics
ψni do not depend on W , so that we can drop the event tWΓpA,A1q P W XWΓpA,A1qc P W1u

from (29). With these changes, by Assumption 7(b)

(29) “ E

»

–

ÿ

gPGˆG1

P
`

g P GNnpW, θ0q X λNnpW, ν, θ0q “ g |W,CcA,A1
˘

ˇ

ˇ

ˇ

ˇ

CcA,A1

fi

fl , (30)

where by “g P GˆG1” we mean “g : gΓpA,A1q P G, g´ΓpA,A1q P G
1.” By (23) and Assumption 3,
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conditional on tW,CcA,A1u, g P GNnpW, θ0q if and only if

gΓpA,A1q P GΓpA,A1qpWΓpA,A1q, θ0q,

gΓpA,A1qc P GΓpA,A1qcpWΓpA,A1qc , θ0q,

and Vijpg,W ; θ0q ă 0 for all i P ΓpA,A1q and j P ΓpA,A1qc (provided r is sufficiently large).
Then by Assumption 7(c), P

`

g P GNnpW, θ0q X λNnpW, ν, θ0q “ g |W,CcA,A1
˘

equals

P
`

gΓpA,A1q P GΓpA,A1qpWΓpA,A1q, θ0q X gΓpA,A1qc P GΓpA,A1qcpWΓpA,A1qc , θ0q

X λΓpA,A1qpWΓpA,A1q, νΓpA,A1q, θ0q “ gΓpA,A1q

X λΓpA,A1qcpWΓpA,A1qc , νΓpA,A1qc , θ0q “ gΓpA,A1qc

X Vij ă 0 for all i P ΓpA,A1q and j P ΓpA,A1qc |W,CcA,A1
˘

. (31)

We can omit the last event in the following expressions, since it holds with probability one
under CcA,A1 by (23). By construction, νS KK W , and tνSuS is independently distributed by
Assumption 1, so (31) equals

P
`

gΓpA,A1q P GΓpA,A1qpWΓpA,A1q, θ0q

X λΓpA,A1qpWΓpA,A1q, νΓpA,A1q, θ0q “ gΓpA,A1q |W,C
c
A,A1

˘

ˆP
`

gΓpA,A1qc P GΓpA,A1qcpWΓpA,A1qc , θ0q

X λΓpA,A1qcpWΓpA,A1qc , νΓpA,A1qc , θ0q “ gΓpA,A1qc |W,C
c
A,A1

˘

.
(32)

We next argue that

tS P SpW, θ0q : S Ď ΓpA,A1qu KKWΓpA,A1qc |C
c
A,A1 . (33)

Fix any S in this set. As argued in (31), (23) implies that GΓpA,A1q P GΓpA,A1qpWΓpA,A1q, θ0q,
which is only random viaWΓpA,A1q. Since S Ď ΓpA,A1q, by the definition of isolated societies,
its elements are fully determined by GΓpA,A1qpWΓpA,A1q, θ0q. Furthermore, CcA,A1 only restricts
the marginal distributions of tXiu

n
i“1 and tζijui,j , so Assumption 1 implies WΓpA,A1q KK

WΓpA,A1qc |C
c
A,A1 .

20 The claim then follows.

20The claim that CcA,A1 only restricts the marginal distributions of attributes follows from the
construction of C as the Cartesian product of set-valued functions, one for each attribute. See
Assumption 4.
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Equation (33) implies that

P
`

gΓpA,A1q PGΓpA,A1qpWΓpA,A1q, θ0q

X λΓpA,A1qpWΓpA,A1q, νΓpA,A1q, θ0q “ gΓpA,A1q |W,C
c
A,A1

˘

“ P
`

gΓpA,A1q PGΓpA,A1qpWΓpA,A1q, θ0q

X λΓpA,A1qpWΓpA,A1q, νΓpA,A1q, θ0q “ gΓpA,A1q |WΓpA,A1q,C
c
A,A1

˘

and similarly for the second conditional probability in (32) Combining these facts, (30)
equals

E

„

ÿ

gΓpA,A1qPG

P
`

gΓpA,A1q PGΓpA,A1qpWΓpA,A1q, θ0q

X λΓpA,A1qpWΓpA,A1q, νΓpA,A1q, θ0q “ gΓpA,A1q |WΓpA,A1q,C
c
A,A1

˘

ˆ
ÿ

gΓpA,A1qcPG
1

P
`

gΓpA,A1qc P GΓpA,A1qcpWΓpA,A1qc , θ0q

X λΓpA,A1qcpWΓpA,A1qc , νΓpA,A1qc , θ0q “ gΓpA,A1qc |WΓpA,A1qc ,C
c
A,A1

˘

ˇ

ˇ

ˇ

ˇ

CcA,A1



.

(34)

Since, as argued previously, WΓpA,A1q KKWΓpA,A1qc |C
c
A,A1 , (34) equals

ÿ

gΓpA,A1qPG

P
`

gΓpA,A1q PGΓpA,A1qpWΓpA,A1q, θ0q

X λΓpA,A1qpWΓpA,A1q, νΓpA,A1q, θ0q “ gΓpA,A1q |C
c
A,A1

˘

ˆ
ÿ

gΓpA,A1qcPG
1

P
`

gΓpA,A1qc P GΓpA,A1qcpWΓpA,A1qc , θ0q

X λΓpA,A1qcpWΓpA,A1qc , νΓpA,A1qc , θ0q “ gΓpA,A1qc |C
c
A,A1

˘

.

By (23) and Assumption 7, this equals the right-hand side of (27) using the arguments for
(29) and (30), as desired.

Proof of Theorem 1. Let A,A1 Ď Nn, H P σpψni ; i P Aq, and H 1 P σpψni ; i P A1q. Define
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CcA,A1 and its complement CA,A1 as in (22). Then by the law of total probability,

|PpH XH 1q ´PpHqPpH 1q| “ |PpH XH 1 |CA,A1qPpCA,A1q `PpH XH 1 |CcA,A1qPpC
c
A,A1q

´
`

PpH |CA,A1qPpCA,A1q `PpH |CcA,A1qPpC
c
A,A1q

˘

ˆ
`

PpH 1 |CA,A1qPpCA,A1q `PpH 1 |CcA,A1qPpC
c
A,A1q

˘

|

“ |PpH XH 1 |CA,A1qPpCA,A1q ´PpH |CA,A1qPpH
1 |CA,A1qPpCA,A1q

2

`PpH XH 1 |CcA,A1qPpC
c
A,A1q ´PpH |CcA,A1qPpH

1 |CcA,A1qPpC
c
A,A1q

2

´PpH |CA,A1qPpCA,A1qPpH
1 |CcA,A1qPpC

c
A,A1q

´PpH |CcA,A1qPpC
c
A,A1qPpH

1 |CA,A1qPpCA,A1q|. (35)

The last two terms in the absolute value on the right-hand side are each bounded above by
PpCA,A1q. The sum of the first two terms in the same expression are bounded above by

PpH XH 1 |CA,A1qPpCA,A1qp1´PpCA,A1qq

`
“

PpH XH 1 |CA,A1q ´PpH |CA,A1qPpH
1 |CA,A1q

‰

PpCA,A1q
2

`PpH XH 1 |CcA,A1qPpC
c
A,A1qp1´PpCcA,A1qq

`
“

PpH XH 1 |CcA,A1q ´PpH |CcA,A1qPpH
1 |CcA,A1q

‰

PpCcA,A1q
2

ď PpCA,A1q ` |PpH XH
1 |CA,A1q ´PpH |CA,A1qPpH

1 |CA,A1q|PpCA,A1q

` p1´PpCcA,A1qq ` |PpH XH
1 |CcA,A1q ´PpH |CcA,A1qPpH

1 |CcA,A1q|PpC
c
A,A1q.

Combining these bounds and (35), we obtain

|PpH XH 1q ´PpHqPpH 1q| ď 4PpCA,A1q

` |PpH XH 1 |CA,A1q ´PpH |CA,A1qPpH
1 |CA,A1q|PpCA,A1q

` |PpH XH 1 |CcA,A1q ´PpH |CcA,A1qPpH
1 |CcA,A1q|PpC

c
A,A1q. (36)

Let αnpA,A1 |CcA,A1q be the conditional mixing coefficient, which is defined analogously to
αnpA,A

1q, replacing the probabilities in the definition with conditional probabilities, the
conditioning event being tCcA,A1u. Then by (36),

αnpA,A
1q ď 5PpCA,A1q ` αnpA,A

1 |CcA,A1q. (37)
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Next define

ᾱa,a1pr |C
c
rq “ suptαnpA,A

1 |CcA,A1q; |A| ď a, |A1| ď a1, dpA,A1q ě r, n P Nu, and

ca,a1prq “ suptPpCA,A1q; |A| ď a, |A1| ď a1, dpA,A1q ě r, n P Nu.

Then by (37),
ᾱa,a1prq ď 5ca,a1prq ` ᾱa,a1pr |C

c
rq.

The coefficient ᾱa,a1pr |Ccrq, is zero with probability one for sufficiently large r by Lemma
C.3. By Lemma C.2, ca,a1prq ď minta, a1uα̂prq with α̂prq “ Opr´3dρ´κq for some κ ą 0.
Hence, Condition 1 holds with η “ 1.

Proof of Theorem 2. L1 convergence follows from Theorem 3 of Jenish and Prucha
(2009), since Theorem 1 implies

ř8
r“1 r

dρ´1ᾱ1,1prq
1{2 Ñ 0. Asymptotic normality follows

from Theorem A.1 of Jenish and Prucha (2012). Assumption 5 is a weaker version of their
increasing domain assumption that allows for finitely many nodes to have the same position.
This does not alter the conclusion of their Lemma A.1, nor, therefore, the aforementioned
theorems.

Proof of Proposition 3.1. For a given a, let A Ď Nn with |A| “ a and fa P FA. Define

QnApW, fa, θq “ tIapgAqfApZoAq : D g´A such that pgA, g´Aq P GNnpW, θqu ,

Eθ rQnApW, fa, θqs “ tEθrqs : q P QnApW, fa, θqu .

By definition, θ P ΘI if and only if for all n, a ą 1, and fa P Fa, there exists some
Epqq P Eθ rQnApW, fa, θqs such that

lim
nÑ8

1

nMn

ÿ

|A|“a

`

ErIapGAqfapZoAqs ´ Epqq
˘

“ 0.

This implies that

lim
nÑ8

1

nMn

ÿ

|A|“a

“

u1ErIapgAqfApZoAqs ´ u1Epqq
‰

ď 0 @u P Rda

ñ lim sup
nÑ8

1

nMn

ÿ

|A|“a

«

u1ErIapgAqfApZoAqs ´ sup
EpqqPEθrQnApW,fa,θqs

u1Epqq

ff

ď 0 @u P Rda .

(38)
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Since for any n, A, and X, the set QnApW, fa, θq contains at most 2|G
Ø
u,a|ˆ|RangepFaq| values,

and RangepFaq “ t0, 1u by assumption, it is a random closed set (Molchanov, 2005). Thus,
by Theorem 2.1.47(iv) of Molchanov (2005),

sup
EpqqPEθrQnApW,fa,θqs

u1Epqq “ Eθ

«

sup
qPQnApW,fa,θq

u1q

ff

.

Hence, (38) holds if and only if

lim sup
nÑ8

1

nMn

ÿ

|A|“a

˜

u1ErIapgAqfApZoAqs ´Eθ

«

sup
qPQnApW,fa,θq

u1q

ff¸

ď 0 @u P Rda ,

ô lim sup
nÑ8

1

nMn

ÿ

|A|“a

ˆ

u1ErIapgAqfApZoAqs ´Eθ

„

max
gPGNn pW,θq

u1IapgAqfApZoAq
˙

ď 0,

which implies

lim sup
nÑ8

1

nMn

ÿ

|A|“a

ˆ

u1ErIapgAqfApZoAqs ´Eθ
„

max
g´A

max
gAPGApg´A,W,θq

u1IapgAqfApZoAq
˙

ď 0,

for all u P Rda .
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