ERRATUM FOR "A WEAK LAW FOR MOMENTS OF PAIRWISE STABLE NETWORKS"

Michael P. Leung*

October 16, 2019

• The definition of Φ^* used in Assumptions 4 and 6 is only correct when $\tilde{p}_1(\cdot)$ and $p_1(\cdot)$ are increasing in z'. For the general case, it should be corrected to the following.

Assumption. There exists a distribution $\Phi^*(z)$ on \mathbb{R}^{d_z} such that, for any $x, x' \in \mathbb{R}^d$ and $z \in \mathbb{R}^{d_z}$,

$$\int_{\mathbb{R}^{d_z}} \tilde{p}_1(x, z; x', z') \, d\Phi(z' \mid x') \leq \int_{\mathbb{R}^{d_z}} \tilde{p}_1(x, z; x', z') \, d\Phi^*(z'), \quad and$$
$$\int_{\mathbb{R}^{d_z}} p_1(x, z; x', z') \, d\Phi(z' \mid x') \leq \int_{\mathbb{R}^{d_z}} p_1(x, z; x', z') \, d\Phi^*(z').$$

For example in the case where $Z_i \perp X_i$, we can take $\Phi^*(\cdot) = \Phi(\cdot)$, since the latter is equal to $\Phi(\cdot | x)$ for any $x \in \text{supp}(f)$.

^{*}Department of Economics, University of Southern California. E-mail: leungm@usc.edu.